## City of Santa Fe Springs



Planning Commission Meeting

## **AGENDA**

MEETING OF THE SANTA FE SPRINGS PLANNING COMMISSION April 10, 2023 6:00 p.m.

> Joseph Flores, Commissioner Gabriel Jimenez, Commissioner John Mora, Commissioner David Ayala, Vice Chairperson Francis Carbajal, Chairperson

You may attend the Planning Commission meeting telephonically or electronically using the following means:

**Electronically using Zoom:** Go to Zoom.us and click on "Join A Meeting" or use the following

link: https://zoom.us/j/558333944?pwd=b0FqbkV2aDZneVRnQ3BjYU12SmJIQT09

Zoom Meeting ID: 558 333 944 Password: 554545

**Telephonically:** Dial: 888-475-4499 Meeting ID: 558 333 944

Public Comment: The public is encouraged to address the Commission on any matter listed on the agenda or on any other matter within its jurisdiction. If you wish to address the Commission, please complete the card that is provided at the rear entrance to the Council Chambers and hand the card to the Secretary or a member of staff. The Commission will hear public comment on items listed on the agenda during discussion of the matter and prior to a vote. The Commission will hear public comment on matters not listed on the agenda during the Oral Communications period. All written comments received by 12:00 p.m. the day of the Planning Commission meeting will be distributed to the Planning Commissioners and made a part of the official record of the meeting. Written comments will not be read the meeting, only the name of the person submitting the comment will be announced.

ADA, if you need special assistance to participate in a City meeting or other services offered by this City, please contact the Planning Department. Notification of at least 48 hours prior to the meeting or time when services are needed will assist the City staff in assuring that reasonable arrangements can be made to provide accessibility to the meeting or service.

Americans with Disabilities Act: In compliance with the

Pursuant to provisions of the Brown Act, no action may be taken on a matter unless it is listed on the agenda or unless certain emergency or special circumstances exist. The Commission may direct staff to investigate and/or schedule certain matters for consideration at a future Commission meeting.

<u>Please Note:</u> Staff reports are available for inspection in the Planning & Development Department, City Hall, 11710 E. Telegraph Road, during regular business hours 7:30 a.m. – 5:30 p.m., Monday – Friday (closed every other Friday) Telephone (562) 868-0511.

#### 1. CALL TO ORDER

#### 2. PLEDGE OF ALLEGIANCE

#### 3. ROLL CALL

Commissioners Ayala, Carbajal, Flores, Jimenez, and Mora

#### 4. EX PARTE COMMUNICATIONS

This section is intended to allow all officials the opportunity to reveal any disclosure regarding site visits or ex parte communications about public hearings.

#### 5. PUBLIC COMMENT

This is the time when comments may be provided by members of the public on matters within the jurisdiction of the Planning Commission, on the agenda and not on the agenda. The time limit for each speaker is three (3) minutes unless otherwise specified by the Chairperson.

#### 6. PUBLIC HEARING

#### (Continued from the March 13, 2023 Planning Commission Meeting)

CEQA - Adoption of Mitigated Negative Declaration

Development Plan Approval (DPA) Case No. 999

A request to allow the construction of a new 99,847 sq. ft. concrete tilt-up industrial building on property located at 12222 Florence Avenue (APN: 8009-022-046), and associated parking lot on an adjacent parcel at 10840 Norwalk Boulevard (APN: 8009-022-039), within the M-2, Heavy Manufacturing, zone.

(Goodman Santa Fe Springs SPE LLC)

#### 7. PUBLIC HEARING

Categorically Exempt - CEQA Guidelines Section 15301, Class 1

Conditional Use Permit (CUP) Case No. 834

A request for approval to establish, operate and maintain a massage parlor use, occupying a 1,519 square foot unit within the Santa Fe Springs Marketplace, located at 11235 Washington Boulevard (APN: 8176-017-019), in the C-4, Community Commercial, Zone. (In Step Massage)

#### 8. NEW BUSINESS

<u>Statutorily Exempt - CEQA Guidelines Sections 15378 (b)(5) and 15061(b)(3)</u> <u>City of Santa Fe Springs Transportation Study Guidelines</u>

#### 9. CONSENTITEM

Consent Agenda items are considered routine matters, which may be enacted, by one motion and roll call vote. Any item may be removed from the Consent Agenda and considered separately by the Planning Commission.

#### A. CONSENTITEM

Conditional Use Permit Case No. 777-3

A request for a time extension of Conditional Use Permit (CUP) Case No. 777 which allowed the establishment, operation, and maintenance of a convenience store at 13417 Rosecrans Avenue (APN: 8059-003-035), within the M-1, Light Manufacturing, Zone. (Muhamet Cifligu)

#### 10. ANNOUNCEMENTS

- Commissioners
- Staff

#### 11. ADJOURNMENT

<u>Americans with Disabilities Act:</u> In compliance with the ADA, if you need special assistance to participate in a City meeting or other services offered by this City, please contact the Planning Department. Notification of at least 48 hours prior to the meeting or time when services are needed will assist the City staff in assuring that reasonable arrangements can be made to provide accessibility to the meeting or service.

I, Teresa Cavallo, hereby certify under penalty of perjury under the laws of the State of California, that the foregoing agenda has been posted at the following locations; city's website at <a href="https://www.santafesprings.com">www.santafesprings.com</a>; City Hall, 11710 Telegraph Road; City Library, 11700 Telegraph Road, and the Town Center Plaza (Kiosk), 11740 Telegraph Road, not less than 72 hours prior to the meeting.

Teresa Cavallo

Planning Secretary

April 7, 2023

Date

## City of Santa Fe Springs



April 10, 2023

<u>PUBLIC HEARING</u> (Continued from the March 13, 2023 Planning Commission Meeting) CEQA - Adoption of Mitigated Negative Declaration

Development Plan Approval (DPA) Case No. 999

A request to allow the construction of a new 99,847 sq. ft. concrete tilt-up industrial building on property located at 12222 Florence Avenue (APN: 8009-022-046), and associated parking lot on an adjacent parcel at 10840 Norwalk Boulevard (APN: 8009-022-039), within the M-2, Heavy Manufacturing, zone. (Goodman Santa Fe Springs SPE LLC)

#### **RECOMMENDATION:**

- Consider the information presented in this report, in combination with the March 13, 2023 staff report, which collectively provide necessary background and context; and
- Find and determine that the proposed project will not be detrimental to persons or properties in the surrounding area or to the City in general, and will be in conformance with the overall purpose and objective of the Zoning Ordinance and consistent with the goals, policies and program of the City's General Plan; and
- Find that the applicant's DPA request meets the criteria set forth in §155.739 of the City's Zoning Ordinance, for the granting of a Development Plan Approval; and
- Approve and adopt the proposed Initial Study/Mitigated Negative Declaration and accompanying Mitigation Monitoring and Reporting Program (MMRP) which, based on the findings of the Initial Study, indicates that there is no substantial evidence, with mitigations, that the proposed project will have a significant adverse immitigable impacts on the environment; and
- Approve Development Plan Approval Case No. 999, subject to the conditions of approval as contained within Resolution No. 229-2023; and
- Adopt Resolution No. 229-2023, which incorporates the Planning Commission's findings and actions regarding this matter.

#### BACKGROUND

At the March 13, 2023 Planning Commission Meeting, the subject DPA was presented by staff for the commissioner's consideration. After opening the public hearing, the commissioners had an opportunity to express their concerns about the proposed project. The applicant also had an opportunity to respond to said concerns.

Vice Chairperson Flores expressed his concern on the possible environmental contaminants on this site and questioned if a hazardous waste study was conducted or if mitigations were being proposed for this project. In addition, Commissioners

Report Submitted By: Claudia Jimenez Date of Report: April 7, 2023

Planning and Development Department

ITEM NO. 6

Flores, Jimenez, Mora, and Vice Chairperson Ayala, expressed their concerns about the traffic impacts along Florence Avenue. In order to allow the Commissioners more time to review the traffic analysis, Vice Chairperson Ayala made a motion to continue the hearing until the next regularly scheduled Planning Commission meeting on April 10, 2023. The motion was provided a second by Commissioner Flores and passed with a 5-0 vote.

#### COMMENTS/QUESTIONS RECEIVED BY THE PLANNING COMMISSION

The topics below provide a brief description of the specific issues raised by the City's Planning Commission, along with staff's response.

#### Issue/Concern Raised:

1. Was a hazardous waste study conducted or was a mitigation for hazardous waste proposed for this site?

#### Staff Response:

As part of the entitlement process, the City's Planning Staff and the assistance of our environmental consultant, Blodgett Baylosis Environmental Planning, provide a thorough environmental review pursuant to the California Environmental Quality Act (CEQA). A standard environmental factor identified within the Initial Study checklist is the Hazards & Hazardous Materials section. Using two State of California agency databases (EnviroStor and GeoTracker), we discovered six sites within a quarter-mile radius of the subject property with environmental cleanup history. The subject property was formerly occupied by Transit Mixed Concrete Company and overseen by the Los Angeles Regional Water Quality Control Board (LARWQCB) for the remediation of underground storage tanks. The LARWQCB closed the case in July of 1996 (RB #R22987). As a result, the subject project did not require any mitigations for Hazards & Hazardous Materials. Nevertheless, the applicant will have a soils management plan in place in case any impacted soils are found during development.

In addition, the adjacent property to the east is formerly known as the Powerine Oil Company Refinery or Cenco Refinery. As part of the redevelopment project for the adjacent property in 2015, an Environmental Impact Report (EIR) was prepared. The results of the EIR were implemented and the adjacent property was redeveloped with three industrial warehouse buildings in 2018. The LARWQCB continues to monitor the adjacent property to ensure that health quality of the site and the surrounding area remain in good standing. As a result, the subject project did not require additional mitigations.

#### Issue/Concern Raised:

2. Explain how traffic will not be impacted by the 14 proposed dock doors.

Report Submitted By: Claudia Jimenez Date of Report: April 7, 2023

#### **Staff Response**

A traffic study was performed and it was concluded that the proposed project will have less peak hour trips than the existing project. Institute of Transporation Engineers (ITE) studies have found that the correlation of vehicle trips to dock doors is not consistent and therefore not a reliable independent variable to use for the purposes of calculating trip generation. Regardless of the number of dock doors, the trip generation of the proposed project would be less than what exists. Additionally, a trip generation for industrial buildings is based on gross square footage of building space, not dock doors.

#### Issue/Concern Raised:

3. What routes will the trucks be taking? Will the trucks cross the Florence Avenue bridge?

#### Staff Response:

As identified in the traffic study, the vehicle trips are fairly evenly distributed and based on the trip distribution and trip generation, there would be 12 net new 2-way 4+-axle truck (65-foot long semi-trucks) trips per day (or 6 net new 4+-axle trucks per day) on the Florence Avenue Bridge over the I-5 Freeway and yes, some trips are anticipated to utilize the Florence Avenue bridge. However, as stated above, it is important to note that there will be less peak hour trips with the proposed project versus the existing project.

#### Issue/Concern Raised:

4. Will trucks enter and exit using the Florence Avenue driveway? Confirm that trucks will not be backing into the site.

#### **Staff Response:**

Smaller trucks may potentially utilize the Florence Avenue entrance, ingress would occur only from the west and egress would be to travel east (access restricted to right-in/right-out only due to the median/left-turn lane Florence), but the primary entrance for ingress/egress is anticipated to be off Norwalk Boulevard. There would be no need for a truck to reverse (backup) into the site because there is full access in and around the site. In addition, Condition of Approval Nos. 41, 50, and 81 prohibits any vehicle from queuing, staging, parking, blocking traffic or otherwise back up onto the street at any time. These conditions would apply to not only Florence Avenue but also Norwalk Boulevard. Furthermore, the traffic assessment identified the driveway off of Florence Avenue would be utilized by single-unit trucks only, which measures 30-feet long, much smaller than semi-trucks. All larger heavy trucks would utilize the driveway on Norwalk Boulevard (also evaluated in the traffic assessment).

#### Issue/Concern Raised:

5. Will the site be used for truck parking? How long will the trucks be parked?

Report Submitted By: Claudia Jimenez Date of Report: April 7, 2023

#### **Staff Response:**

The site is designed with an industrial warehouse building and therefore does not accommodate stand-alone truck parking. As a result, any trucks that are anticipated to park at the subject site would be at one of the dock door locations along the east side of the building. The length of time that trucks are expected to remain will vary depending on the tenant and use that occupies the site. An accurate answer to that questions isn't possible until the tenant is known.

Wayne M. Morrell Director of Planning

#### Attachment

- 1. March 13, 2023 Planning Commission Staff Report
- 2. Project Plans
- 3. Resolution 229-2023
  - a. Exhibit A Conditions of Approval
  - b. Exhibit B Draft Initial Study/Mitigated Negative Declaration
  - c. Exhibit C Final Traffic Assessment Report
  - d. Exhibit D Mitigation Monitoring and Reporting Program

## City of Santa Fe Springs



March 13, 2022

#### **PUBLIC HEARING**

CEQA - Adoption of Mitigated Negative Declaration

Development Plan Approval (DPA) Case No. 999

A request to allow the construction of a new 99,847 sq. ft. concrete tilt-up industrial building on property located at 12222 Florence Avenue (APN: 8009-022-046), and associated parking lot on an adjacent parcel at 10840 Norwalk Boulevard (APN: 8009-022-039), within the M-2, Heavy Manufacturing, zone.

(Goodman Santa Fe Springs SPE LLC)

#### **RECOMMENDATIONS:**

- Open the Public Hearing and receive the staff report and comments from the public regarding Development Plan Approval (DPA) Case No. 999 and related Environmental Documents, and thereafter, close the Public Hearing; and
- Find and determine that the proposed project will not be detrimental to persons or properties in the surrounding area or to the City in general, and will be in conformance with the overall purpose and objective of the Zoning Ordinance and consistent with the goals, policies and program of the City's General Plan; and
- Find that the applicant's DPA request meets the criteria set forth in §155.739 of the City's Zoning Ordinance, for the granting of a Development Plan Approval; and
- Approve and adopt the proposed Initial Study/Mitigated Negative Declaration and accompanying Mitigation Monitoring and Reporting Program (MMRP) which, based on the findings of the Initial Study, indicates that there is no substantial evidence, with mitigations, that the proposed project will have a significant adverse immitigable impacts on the environment; and
- Approve Development Plan Approval Case No. 999, subject to the conditions of approval as contained within Resolution No. 229-2023; and
- Adopt Resolution No. 229-2023, which incorporates the Planning Commission's findings and actions regarding this matter.

#### **GENERAL INFORMATION**

A. Applicant: Attn: Jeff Hamilton

Goodman Santa Fe Springs SPE LLC

18201 Von Karman Avenue

Irvine, CA 92612

Report Submitted By: Claudia Jimenez

Planning and Development Department

Date of Report: March 10, 2023

ITEM NO. 7

DPA Case No. 999 Page 2 of 16

B. Property Owner: Goodman Santa Fe Springs SPE LLC

18201 Von Karman Avenue

Irvine, CA 92612

C. Location of Proposal: 12222 East Florence Avenue

Santa Fe Springs, CA 90670

and

10840 Norwalk Boulevard Santa Fe Springs, CA 90670

D. Existing Zone: M-2 (Heavy Manufacturing)

E. General Plan: Industrial and Commercial

F. Environmental Determination: Mitigated Negative Declaration

G. Staff Contact: Claudia Jimenez, Assistant Planner

claudiajimenez@santafesprings.org

(562) 868-0511 x7356

#### **LOCATION / BACKGROUND**

The subject site, located at 12222 Florence Avenue and 10840 Norwalk Boulevard, is comprised of (2) two parcels (Parcel #1 / APN: 8009-022-046 and Parcel #2/ APN: 8009-022-039) totaling approximately 219,234 sq. ft. (5.03 acres) and was previously occupied by an oil well service and maintenance company.

Parcel #1 is zoned M-2 (Heavy Manufacturing) and is currently developed with (4) industrial buildings, measuring approximately 29,680 sq. ft. and a structure, with a lot size measuring approximately 201,690 sq. ft. (4.63 acres). Parcel #2 is currently zoned M-2, but changing to C4 – Community Commercial zone, per the new adopted General Plan update. It is currently developed with an approximately 14,636 sq. ft. industrial building and measures approximately 17,859 sq. ft. (0.41 acres).

From approximately 1955 to 1962, the site was occupied by a concrete batch plant and concrete transporting equipment company. From 1962 to June 2000, an oil well service company formally known as United Riggers & Erectors, Inc. occupied the subject site and used the property for maintenance, storage, repair, and cleaning of its equipment. In 2000, after closing escrow, Franklin Steel purchased the property and obtained permits and authorization to proceed with grading and improvements to the property. In May of 2000, a request for approval to develop four (4) structures on two adjoining parcels, at 12222 Florence Avenue and 10840 Norwalk Boulevard

Report Submitted By: Claudia Jimenez Date of Report: March 10, 2023

DPA Case No. 999 Page 3 of 16

was approved by the Planning and Community Development Commission. Several oil well companies have since occupied the subject site. The last company, OWS Company, occupied the site from April 2012 to June 2022.

#### **DESCRIPTION OF REQUEST**

The applicant, Goodman Santa Fe Springs SPE LLC, recently purchased both adjoining parcels and is in the process of demolishing the four (4) existing structures on the subject site and thereafter will begin remediating the site in preparation for the development of a new concrete tilt-up industrial building and associated parking lot. The proposed building will be located at 12222 Florence Avenue and the associated parking lot will be located on the adjacent parcel at 10840 Norwalk Boulevard.

The proposed projects require approval of the following entitlement and agreement:

<u>Development Plan Approval (DPA) Case No. 999</u>: To allow the construction of a 99,847 sq. ft. concrete tilt-up industrial building on property located at 12222 Florence Avenue (APN: 8009-022-046), and associated parking lot on an adjacent parcel at 10840 Norwalk Boulevard (APN: 8009-022-039), within the M-2, Heavy Manufacturing, zone; and

Access and Parking Reciprocal Agreement: An agreement to ensure that the parcel located at 10840 Norwalk Boulevard (APN: 8009-022-039) will continuously grant and provide reciprocal parking and also provide both vehicle and pedestrian access to the parcel located at 12222 Florence (APN: 8009-022-046). Additionally, that both parcels shall be maintained kept, sold and used and in full compliance.

#### **DEVELOPMENT PLAN APPROVAL CASE NO. 999**

#### Site Plan

The applicant is proposing to construct a new 98,847 sq. ft. concrete tilt-up industrial building at 12222 East Florence Avenue (APN: 8009-022-046). The proposed industrial building will be setback at a minimum 390' from East Florence Avenue and setback at a minimum 230' from Norwalk Boulevard. The proposed development will provide two (2) driveways: A 30' wide driveway along Florence Avenue for egress and a 40' wide driveway along Norwalk Boulevard for both ingress and egress. Parking for the subject site is evenly distributed along all four sides of the proposed building and a parking lot on the adjacent westerly parcel located at 10840 Norwalk Boulevard.

#### Floor Plan

The floor plan indicates that the proposed industrial building will measure 99,874 sq. ft., with 3,000 sq. ft. designated as first floor office area, 5,200 sq. ft. designated mezzanine area, and the remaining 91,674 sq. ft. designated for warehouse/manufacturing use.

Report Submitted By: Claudia Jimenez Date of Report: March 10, 2023

Planning and Development Department

DPA Case No. 999 Page 4 of 16

#### Elevations

The elevations indicate that the proposed industrial building will have a contemporary design. The majority of the architectural enhancements were provided along the north and west elevations due to their visibility from the adjacent streets. The main entry and office area (east, west, and north elevations) are provided with extensive glazing, color variation, pop-outs, height variation, and material used. The remaining elevations have been provided with a combination of the aforementioned architectural treatments, which results in an aesthetically pleasing building.

#### Landscape Requirement

For maximum value, the majority of the landscaping will be provided along the front setback areas that adjoins Norwalk Boulevard. Additionally, as required by the Code, the applicant will landscape at least 6% of the parking area. The minimum landscape requirement for the project based on the overall street frontage of 100' and 95,619 sq. ft. of parking and driveway areas is 8,237 sq. ft. According to the conceptual landscape plan, the applicant will be providing an overall total of 11,547 sq. ft. of landscaping throughout the site. The project, therefore, exceeds the minimum requirement set forth within the City's Zoning Ordinance.

#### Parking Requirements

A total of 149 parking stalls will be provided for the new building: 95 standard stalls, 23 compact stalls, 11 electric vehicle stalls, 15 parallel, and 5 accessible stalls. As proposed, the project is required to provide a total of 146 parking stalls.

The project's parking calculation consist of the following:

| Use        | Calculations                      | Required | Provided |
|------------|-----------------------------------|----------|----------|
| Industrial | 20,000 sq. ft. ÷ 500 (up to 20K); | 146      | 149      |
|            | plus 79,847 ÷ 750                 |          |          |

The applicant will be providing 149 parking stalls between the two subject parcels. The proposed project, therefore, meets the minimum parking requirements set forth within the City's Zoning Ordinance.

#### Loading/ Roll Up Doors

According to the site plan, the proposed building will have a total of fourteen (14) dock-high loading doors along the east elevation. All loading doors are strategically placed so that they will not be directly visible from Florence Avenue and Norwalk Boulevard.

Per the City's Zoning Ordinance, all off-street truck loading areas, zones, ramps, doors, wells, or docks shall be designed to provide and maintain a minimum

Report Submitted By: Claudia Jimenez Date of Report: March 10, 2023
Planning and Development Department

DPA Case No. 999 Page 5 of 16

unobstructed area of 120' to allow for proper truck maneuvering on-site. According to the site plan, the proposed project will provide the required unobstructed area in all necessary locations.

#### Trash Enclosures

According to the site plan, an 8'- high trash enclosure totaling approximately 178 sq. ft. will be located along the east elevation. The proposed trash enclosure is strategically placed behind the proposed building and thus, will not be visible or accessible to the public. Additionally, the applicant will be required to provide multiple trash pick-ups per week or include a trash compactor, to meet the required trash enclosure building requirements.

The trash enclosure calculations consist of the following:

| Use       | Calculations                                         | Required    | Provided    |
|-----------|------------------------------------------------------|-------------|-------------|
| Trash     | 20,000 sq. ft. (20,000/1000) x                       | 440 sq. ft. | 178 sq. ft. |
| Enclosure | 10 = 200 sq. ft.<br>79,847 sq. ft. (79,847/1000) x 3 |             |             |
|           | = 240 sq. ft.                                        |             |             |

#### STREETS AND HIGHWAYS

The subject site is located on the south side of Florence Avenue and on the east side of Norwalk Boulevard. Both Florence Avenue and Norwalk Boulevard are designated as a "Major" arterials, within the Circulation Element of the City's General Plan.

#### **ZONING AND LAND USE**

The subject site is zoned M-2 (Heavy Manufacturing). The property has a General Plan Land Use designation of Industrial. The zoning, General Plan and land use of the surrounding properties are as follows:

| Surrounding Zoning, General Plan Designation, Land Use |                                   |                 |                                                                                        |
|--------------------------------------------------------|-----------------------------------|-----------------|----------------------------------------------------------------------------------------|
| Direction                                              | Zoning District                   | General<br>Plan | Land Use (Address/Business Name)                                                       |
| North                                                  | M-2, Heavy<br>Manufacturing, Zone | Industrial      | Manufacturing<br>(12230 East Florence Avenue/ NHK Laboratories                         |
| South                                                  | M-2, Heavy<br>Manufacturing, Zone | Industrial      | Water works equipment supplier (12247 Lakeland Road/Western Water Works Supply Company |
| East                                                   | M-2, Heavy<br>Manufacturing, Zone | Industrial      | Warehouse supplier of hardware<br>(12318 East Florence Avenue/ Mc Master Carr          |
| West                                                   | M-2, Heavy<br>Manufacturing       | Industrial      | Forklift Rental Services<br>(10845 Norwalk Boulevard/Quality Lift &<br>Equipment       |

#### LEGAL NOTICE OF PUBLIC HEARING

Report Submitted By: Claudia Jimenez

Planning and Development Department

Date of Report: March 10, 2023

DPA Case No. 999 Page 6 of 16

This matter was set for Public Hearing in accordance with the requirements of Sections 65090 and 65091 of the State Planning, Zoning and Development Laws and the requirements of Sections 155.860 through 155.864 of the City's Municipal Code.

Legal notice of the Public Hearing for the proposed project was sent by first class mail to all property owners whose names and addresses appear on the latest County Assessor's Roll within 500 feet of the exterior boundaries of the subject site on March 2, 2023. The legal notice was also posted in Santa Fe Springs City Hall, the City's Town Center kiosk, and subject site on March 2, 2023. And published in a newspaper of general circulation (Whittier Daily News) on March 3, 2023, as required by the State Zoning and Development Laws and by the City's Zoning Regulations. As of the date of this report, staff has not received any comments and/or inquiries regarding the proposed project.

#### **ZONING REQUIREMENTS**

The procedures set forth in Section 155.736 of the Zoning Regulations, states that a DPA is required for the siting of new structures or additions or alterations to existing structures.

| Code<br>Section: | Development Plan Approval                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 155.736          | Section 155.736  The purpose of the development plan approval is to assure compliance with the provisions of this chapter and to give proper attention to the siting of new structures or additions or alterations to existing structures, particularly in regard to unsightly and undesirable appearance, which would have an adverse effect on surrounding properties and the community in general. |

#### **ENVIRONMENTAL DOCUMENTS**

The environmental analysis provided in the Initial Study indicates that the proposed project will not result in any significant adverse immitigable impacts on the environment; therefore the City caused to be prepared and proposed to adopt a Mitigated Negative Declaration (MND) for the proposed project. The MND reflects the independent judgment of the City of Santa Fe Springs, and the environmental consultant, Blodgett Baylosis Environmental Planning.

#### **Phases in the Environmental Review Process:**

The implementation of the California Environmental Quality Act (CEQA) entails three separate phases:

Report Submitted By: Claudia Jimenez Date of Report: March 10, 2023
Planning and Development Department

DPA Case No. 999 Page 7 of 16

 The first phase consists of preliminary review of a project to determine whether it is subject to CEQA

- 2. If the project is subject to CEQA, the second phase involves the preparation of the Initial Study to determine whether the project may have a significant environmental effect.
- 3. The third phase involves the preparation of an Environmental Impact Report (EIR) if the project may have a significant environmental effect on a Negative Declaration or Mitigated Declaration if no significant effects will occur.

<u>Phase 1</u>: The first phase is to determine if the proposed project is subject to CEQA. CEQA applies to an activity that (a) involves the exercise of an agency's discretionary powers, (b) has the potential to result in a direct or reasonable foreseeable indirect physical change in the environment, and (c) falls within the definition of a "project" as defined in CEQA Guidelines Section 15378. City Staff and Blodgett Baylosis Environmental Planning reviewed the proposal and determined that the project is subject to CEQA.

Phase 2: The second phase involves the preparation of an Initial Study. An Initial Study is a preliminary analysis to determine whether an EIR or a Negative Declaration or Mitigated Negative Declaration can be prepared. If the Initial Study concludes that the proposed project may have a significant effect on the environment that cannot be mitigated, an EIR should be prepared. If potentially significant impacts are identified that can be mitigated, then a Mitigated Negative Declaration can be prepared with mitigation measures conditioned as part of the project's approval to reduce potentially significant impacts to levels of insignificance. To facilitate the Commission's determination of whether "effects" are potentially significant, the Commission should focus on scientific and factual data. Unfortunately, CEQA does not provide a definitive definition of what constitutes a "significant effect" as substantial or potentially substantial adverse change in the physical environment. City Staff and Blodgett Baylosis Environmental Planning determined, through the preparation of the Initial Study that there were no potentially significant environmental effects that could not be mitigated to a level of insignificance and, therefore, a Mitigated Negative Declaration was prepared.

<u>Phase 3</u>: A Mitigated Negative Declaration is a written statement, briefly explaining why a proposed project will not have a significant environmental effect and includes a copy of the Initial Study justifying this finding. Included within the Initial Study are mitigation measures to avoid potentially significant effects. City Staff and Blodgett Baylosis Environmental Planning determined that, although the proposed project could have a significant effect on the environment, revisions in the project have been made by or agreed to by the project applicant or mitigation measures are being implemented to reduce all potential effects to levels of insignificance. As a result, a Mitigated Negative Declaration was prepared for the project.

DPA Case No. 999 Page 8 of 16

#### **Draft MND Review:**

The Draft Initial Study/Mitigated Negative Declaration reflects the independent judgment of the City of Santa Fe Springs and the environmental consultant, Blodgett Baylosis Environmental Planning as to the potential environmental impacts of the proposed project on the environment. The Draft Initial Study/Mitigated Negative Declaration was circulated for the required 30-day public review and comments from October 18, 2022, to November 17, 2022. The Notice of Intent to adopt a Mitigated Negative Declaration was posted with the Los Angeles County Clerk and the State Clearinghouse. The Planning Commission were emailed a copy of the Draft Initial Study/Mitigated Negative Declaration in October 2022. A copy of the Notice of Intent to adopt a Mitigated Negative Declaration was also mailed to all responsible trustee agencies as well as surrounding cities for their review and comment.

On October 17, 2022, the City released the Draft IS/MND, along with the accompanying appendices. These materials were made available to the public throughout the 30-day review and comment period. The public comment period for the Draft IS/MND ended October 17, 2022, and staff received one (1) comment letter within the review period (Southwest Regional Council of Carpenters on behalf of Michelle M. Tsai). All environmental documents related to the proposed project were also made available for review on the City's website.

 City of Santa Fe Springs Website: <a href="https://www.santafesprings.org/cityhall/planning/planning/environmental\_documents.asp">https://www.santafesprings.org/cityhall/planning/planning/environmental\_documents.asp</a>

When reviewing the Mitigated Negative Declaration/Initial Study, the focus of the review should be on the project's potential environmental effects. If persons believe that the project may have a significant effect, they should, (a) Identify the specific effect; (b) Explain why they believe the effect would occur, and; (c) Explain why they believe the effect would be significant.

Individuals who believe there are significant effects as outlined above, should also explain the basis for their comments and submit data or reference offering facts, reasonable assumptions based on facts, or expert opinion supported by facts in support of the comments. Pursuant to CEQA Guidelines, an effect shall not be considered significant in the absence of substantial evidence.

#### **Response to Comments:**

A response to the comments section was created as part of the Final Initial Study/Mitigated Negative Declaration (IS/MND) in response to the one (1) comment that the City received. The public comments and responses to comments are included in the public record and are available for the Planning Commission to

Report Submitted By: Claudia Jimenez Date of Report: March 10, 2023
Planning and Development Department

DPA Case No. 999 Page 9 of 16

review. (Attachment 6 - Exhibit B)

#### **Potentially Affected Environmental Factors:**

The draft Initial Study/Mitigated Negative Declaration has identified several factors that may be potentially affected by the subject project which include: *Aesthetic Impacts, Cultural Resources, Noise, and Tribal Cultural Resources.* These factors and their respective pertinent issues are discussed and analyzed within the Initial Study/Mitigated Negative Declaration. Mitigations, where necessary, were implemented to help ensure potential impacts are reduced to a less than significant level. A detailed analysis can be found in the Initial Study/Mitigated Negative Declaration and the corresponding Mitigated Monitoring and Reporting Program.

#### **Mitigation Monitoring:**

The monitoring and reporting on the implementation of these measures, including the monitoring action, monitoring agency, and the period for implementation, are identified in the Mitigation Monitoring and Reporting Program. (Attachment 6 – Exhibit D)

#### **AUTHORITY OF PLANNING COMMISSION**

The Planning Commission may grant, conditionally grant, or deny approval of a proposed development plan or modification request based on the evidence submitted and upon its study and knowledge of the circumstances involved and subject to such conditions as the Commission deems are warranted by the circumstances involved. These conditions may include the dedication and development of streets adjoining the property and other improvements. All conditions of Development Plan Approval shall be binding upon the applicants, their successors, and assigns; shall run with the land; shall limit and control the issuance and validity of certificates of occupancy; and shall restrict and limit the construction, location, use and maintenance of all land and structures within the development.

#### CRITERIA FOR GRANTING A DEVELOPMENT PLAN APPROVAL

The Commission should note that in accordance with Section 155.739 of the City's Zoning Ordinance, before granting a Development Plan Approval, the Commission shall give consideration to the following:

- 1) <u>That the proposed development is in conformance with the overall objectives of this chapter.</u>
- 2) That the architectural design of the proposed structures is such that it will enhance the general appearance of the area and be in harmony with the intent of this chapter.

Report Submitted By: Claudia Jimenez Date of Report: March 10, 2023
Planning and Development Department

DPA Case No. 999 Page 10 of 16

3) That the proposed structures be considered on the basis of their suitability for their intended purpose and on the appropriate use of materials and on the principles of proportion and harmony of the various elements of the buildings or structures.

- 4) That consideration be given to landscaping, fencing and other elements of the proposed development to ensure that the entire development is in harmony with the objectives of this chapter.
- 5) That it is not the intent of this subchapter to require any particular style or type of architecture other than that necessary to harmonize with the general area.
- 6) That it is not the intent of this subchapter to interfere with architectural design except to the extent necessary to achieve the overall objectives of this chapter.
- 7) As a means of encouraging residential development projects to incorporate units affordable to extremely low income households and consistent with the city's housing element, the city will waive Planning Department entitlement fees for projects with a minimum of 10% extremely low income units. For purposes of this section, extremely low income households are households whose income does not exceed the extremely low-income limits applicable to Los Angeles County, as published and periodically updated by the state's Department of Housing and Community Development pursuant Cal. Health and Safety Code § 50106.

#### STAFF REMARKS

Based on the findings set forth in the attached Resolution No.229-2023 (see attachment 6), Staff finds that the applicant's request meets the criteria set forth in §155.739 of the City's Zoning Ordinance, for the granting of a Development Plan Approval. Staff is, therefore recommending approval of Development Plan Approval Case No. 999, subject to the conditions of approval.

#### **CONDITIONS OF APPROVAL**

Conditions of approval for DPA Case No. 999 are attached to Resolution No. 229-2023 as Exhibit A.

DPA Case No. 999 Page 11 of 16

#### Wayne M. Morrell **Director of Planning**

#### Attachments:

- 1. Aerial Photograph
- Project Plans
   Public Hearing Notice
- 4. Radius Map for Public Hearing Notice
- 5. Resolution No. 229-2023
  - a. Exhibit A Conditions of Approval.
  - b. Exhibit B IS/MND (delivered 10/18/2022)
  - c. Exhibit C Final Traffic Assessment Report
  - d. Exhibit D Mitigation Monitoring and Reporting Program

DPA Case No. 999 Page 12 of 16

# Attachment #1 Aerial Photograph



#### CITY OF SANTA FE SPRINGS



## Development Plan Approval (DPA) Case No. 999

12222 E. Florence Avenue & 10840 Norwalk Boulevard APNs: 8009-022-046 & 8009-022-039

Report Submitted By: Claudia Jimenez

Planning and Development Department

Date of Report: March 10, 2023

DPA Case No. 999 Page 13 of 16 Attachment # 2
Project Plans Report Submitted By: Claudia Jimenez
Planning and Development Department Date of Report: March 10, 2023

DPA Case No. 999 Page 14 of 16

#### Attachment #3 **Public Hearing Notice**

#### FILE COPY



#### NOTICE OF PUBLIC HEARING DEVELOPMENT PLAN APPROVAL CASE NO. 999

NOTICE IS HEREBY GIVEN that the Planning Commission of the City of Santa Fe Springs will hold a Public Hearing to consider the following:

DEVELOPMENT PLAN APPROVAL CASE NO. 999: A request for approval to allow the construction of a new 99,847 sq. ft. concrete tilt-up industrial building and associated parking lot on an adjacent parcel.

PROJECT LOCATION: 12222 East Florence Avenue, (APN: 8009-022-039) and 10840 Norwalk Boulevard, Santa Fe Springs Road (APN: 8009-022-039)

THE HEARING will be held before the Planning Commission of the City of Santa Fe Springs in the Council Chambers of the City Hall, 11710 Telegraph Road, Santa Fe Springs, on Monday, March 13, 2023 at 6:00 p.m.

You may also attend the meeting telephonically or electronically using the following means:

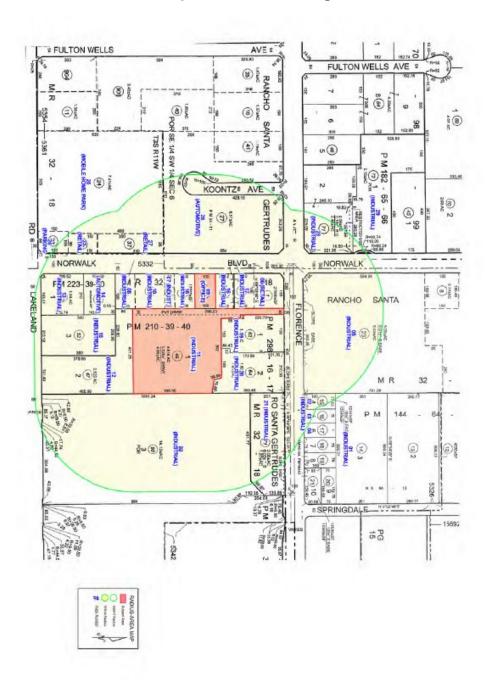
Electronically using Zoom Go to Zoom.us and click on "Join A Meeting" or use the following link: https://zoom.us/j/558333944?pwd=b0FqbkV2aDZneVRnQ3BjYU12SmJIQT09

Zoom Meeting ID: 558 333 944 Password: 554545

Telephonically Dial: 888-475-4499 Meeting ID: 558 333 944

CEQA STATUS: Upon review of the proposed project, staff has determined that additional environmental analysis is required to meet the requirements of the California Environmental Quality Act (CEQA). The applicant has since retained Blodgett Baylosis Environmental Planning to prepare the necessary Initial Study/Mitigated Negative Declaration and associated studies. The draft CEQA documents are finalized and an NOI

> Juanita Martin, Mayor • Jay Sarno, Mayor Pro Tem City Council Annette Rodriguez • William K. Rounds • Joe Angel Zamora City Manager Travis Hickey, Acting City Manager


Report Submitted By: Claudia Jimenez

Planning and Development Department

Date of Report: March 10, 2023

DPA Case No. 999 Page 15 of 16

Attachment #4
Radius Map for Public Hearing Notice



DPA Case No. 999 Page 16 of 16

# Attachment #5 Resolution No. 229-2023

- a. Exhibit A Conditions of Approval.
- b. Exhibit B IS/MND (delivered 10/18/2022)
- c. Exhibit C Final Traffic Assessment Report
- d. Exhibit D Mitigation Monitoring and Reporting Program



## **SITE PLAN KEYNOTES**

- 1 > HEAVY BROOM FINISH CONCRETE TRUCK APRON. REFER TO STRUCTURAL DRAWINGS FUTURE MONUMENT SIGN. PROVIDE ELECTRICAL CONDUIT FOR FUTURE INSTALLATION

  — UNDER SEPARATE SUBMITTAL
- 3 CONCRETE WALKWAY, MEDIUM BROOM FINISH
- (4) CONCRETE PAVING AS NOTED ON CIVIL DRAWINGS.
- 5'-6"X5'-6"X4" THICK CONCRETE EXTERIOR LANDING PAD TYP. AT ALL EXTERIOR MAN DOORS TO LANDSCAPED AREAS. FINISH
- TO BE MEDIUM BROOM FINISH. TRANSFORMERS PER ELECTRICAL DRAWINGS AND SERVICE PROVIDER.
- 8'-0" HIGH TUBULAR METAL GATES W/ KNOX-BOX PER FIRE DEPARTMENT STANDARDS AT EA. GATE. CONTRACTOR TO DESIGN & DETAIL GATES DRAWINGS AND CALCULATIONS PRIOR TO FABRICATION. PROVIDE
- CONDUIT FOR FUTURE MOTORIZED GATE. SEE DETIAL 8/AD.5 ENHANCED DRIVEWAY. 2' WIDE BAND SAW CUT PERIMETER WITH
- STAMPED COLOR CONCRETE TO BE SELECTED BY ARCHITECT 9 BIKE RACK TYPICAL. SEE DETAIL 13/AD.2
- (10) FIRE HYDRANT. PER "FP" DWGS.
- 1) EXTERIOR CONCRETE STAIR. REF TO CIVIL DRAWINGS.
- "A" SEE DETAIL 5,9/AD.2 (SIDE CONCRETE GUARDRAIL WITH HANDRAILS) "B" - SEE DETAIL 1,2/AD.2 (FRONT CONCRETE GUARDRAIL WITH HANDRAILS) "C" - SEE DETAIL 4A/AD.2 (HANDRAILS ONLY AT STEPS FOR LOW STAIRS)
- (12) 12'W X 14H' OVERHEAD DOOR @ DRIVE THRU.
- LANDSCAPE. ALL LANDSCAPE AREAS INDICATED BY SHADING. REFER TO LANDSCAPE PLAN
- 14 CONC. FILLED GUARD POST "6 DIA. U.N.O. 42" H, SEE DETAIL 9/AD.1
- (15) KNOX BOX PER FIRE DEPARTMENT STANDARD 16 8'-0" HIGH SLIDING METAL GATES W/ KNOX-BOX PER FIRE DEPARTMENT STANDARDS AT EA. GATE. CONTRACTOR TO DESIGN & DETAIL GATES DRAWINGS AND CALCULATIONS PRIOR TO FABRICATION. PROVIDE CONDUIT
- FOR FUTURE MOTORIZED GATE. SEE DETAIL 8/AD.2
- $\langle 18 \rangle$  PRE-CAST CONC. WHEEL STOP. SEE DETAIL 3/AD.1
- $\langle 19 \rangle$  TRUNCATED DOME. SEE DETAIL 17/AD.1
- $\langle 23 \rangle$  NOT USED.
- $\langle 24 \rangle$  EACH MAIN ENTRANT TO BE POSTED WITH "NO SMOKING AREA SIGNAGE". SEE DETAIL 9/AD.5
- $\langle 25 \rangle$  8'-0" HIGH PAINTED BLACK TUBULAR FENCE REFER TO 8/AD.5
- $\langle 26 \rangle$  ACCESSIBLE ENTRY SIGN. SEE DETAIL 15/AD.1
- 27 ACCESSIBLE PARKING STALL SIGN. SEE DETAIL 14, 19/AD.1
- 29 TRASH ENCLOSURE. SEE DETAIL AD.7
- $\langle 30 \rangle$  fence door. See detail 5/ad.5
- (31) FIRE POST-INDICATOR GATE VALVE. SEE "FP" DWGS
- (32) LIGHT POLE BASE PER STRUCTURAL, FIXTURE PER ELECTRICAL 20/AD.5
- (33) ROOF DRAIN THRU WALL & CURB, SEE DETAIL 18, 19/AD.3
- (34) FUTURE MOTOR LOCATION PROVIDE ELEC. STUBS UP SEE ELEC.
- $\langle 35 \rangle$  FUTURE MONUMENT SIGN. PROVIDE CONDUITS SEE LANDSCAPE PLANS.
- $\langle 36 \rangle$  14' concrete screen wall
- $\langle 37 \rangle$  SMOKING AREA, SEE DETAIL 6, 7/AD.5

## SITE PLAN GENERAL NOTES

- 1. THE SOILS REPORT PREPARED BY SOUTHERN CALIFORNIA GEOTECHNICAL DATED ON JUNE 04, 2021 AND PROJECT NUMBER 21G165-1 SHOULD BE A PART OF THESE CONTRACT DOCUMENTS.
- 2. SEE CIVIL AND STRUCTURAL FOR SITE CONCRETE.
- 3. ALL DIMENSIONS ARE TO THE FACE OF CONCRETE WALL, FACE OF CONCRETE CURB OR GRID LINE U.N.O.
- 4. SEE "C" PLANS FOR ALL CONCRETE CURBS, GUTTERS AND SWALES. DETAILS ON SHEET AD.1 ARE MINIMUM STANDARDS.
- 5. THE ENTIRE PROJECT SHALL BE PERMANENTLY MAINTAINED WITH AN AUTOMATIC IRRIGATION SYSTEM.
- 6. SEE "C" DRAWINGS FOR POINT OF CONNECTIONS TO OFF-SITE UTILITIES. CONTRACTOR SHALL VERIFY ACTUAL UTILITY LOCATIONS.
- 7. PROVIDE POSITIVE DRAINAGE AWAY FROM BLDG. SEE "C" DRAWINGS.
- 8. CONTRACTOR TO REFER TO "C" DRAWINGS FOR ALL HORIZONTAL CONTROL DIMENSIONS. SITE PLANS ARE FOR GUIDANCE AND STARTING LAYOUT POINTS.
- 9. SEE "C"DRAWINGS FOR FINISH GRADE ELEVATIONS.
- 10. CONCRETE SIDEWALKS TO BE A MINIMUM OF 4" THICK W/ TOOLED JOINTS AT 6' O.C. EXPANSION/CONSTRUCTION JOINTS SHALL BE A MAXIMUM 12' EA. WAY. EXPANSION JOINTS TO HAVE COMPRESSIVE EXPANSION FILLER MATERIAL OF 1/4". FINISH TO BE A MEDIUM BROOM FINISH U.N.O.
- 11. SIGNS AND IDENTIFICATION DEVICES SHALL BE FIELD INSPECTED AFTER INSTALLATION AND APPROVED BY THE ENFORCING AGENCY PRIOR TO THE ISSUANCE OF A FINAL CERTIFICATE OF OCCUPANCY PER CHAPTER 1, DIVISION II, SECTION 111, OR FINAL APPROVAL WHERE NO CERTIFICATE OF OCCUPANCY IS ISSUED. THE INSPECTION SHALL INCLUDE, BUT NOT BE LIMITED TO, VERIFICATION THAT BRAILLE DOTS AND CELLS ARE PROPERLY SPACED AND THE SIZE, PROPORTION AND TYPE OF RAISED CHARACTERS
- ARE IN COMPLIANCE WITH THESE REGULATIONS. [CBC 11B-703.1.1.2] 12. PAINT CURBS AND PROVIDE SIGNS TO INFORM OF FIRE LANES AS REQUIRED BY FIRE DEPARTMENT.
- 13. CONSTRUCTION DOCUMENTS PERTAINING TO THE LANDSCAPE AND IRRIGATION OF THE ENTIRE PROJECT SITE SHALL BE SUBMITTED TO THE BUILDING DEPARTMENT AND APPROVED BY PUBLIC FACILITIES DEVELOPMENT PRIOR TO ISSUANCE OF BUILDING PERMITS.
- 14. PRIOR TO FINAL CITY INSPECTION, THE LANDSCAPE ARCHITECT SHALL SUBMIT A CERTIFICATE OF COMPLETION TO PUBLIC FACILITIES DEVELOPMENT.
- 15. FUEL-EFFICIENT VEHICLE PARKING WILL BE PROVIDED IN ACCORDANCE WITH CGC SECTION 5.106.5.2
- 16. ALL LANDSCAPE AND IRRIGATION DESIGNS SHALL MEET CURRENT CITY STANDARDS AS LISTED IN GUIDELINES OR AS OBTAINED FROM PUBLIC
- 17. EXTERIOR LIGHT POLLUTION MUST COMPLY WITH CGC SECTION 5.106.8 18. ALL VERTICAL MOUNTING POLES OF CHAIN LINK FENCING SHALL BE CAPPED.
- 19. LANDSCAPED AREAS SHALL BE DELINEATED WITH A MINIMUM SIX INCHES (6") HIGH CURB

## SITE PLAN GENERAL NOTES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANDARD PARKING<br>STALL (8.5' X 19')<br>ACCESSIBLE PARKING STALL,<br>9'X18+5'W ACCESSIBLE AISLE                                                                 |                | LIGHT STANDARD  26' WIDE FIRE LANE. PROVIDE CURBS AND SIGNAGE PER FIRE REQUIREMENT                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regulation of the control of the con | VAN ACCESSIBLE 12'X18'+5'W ACCESSIBLE AISLE CLEAN AIR/VANPOOL/EV CLEAN AIR/VANPOOL/EV (PROVIDE CONDUIT FOR FUTURE EV CHARGING) COMPACT PARKING STALL (8.5' X 17') | ₩<br>₽.H.<br>1 | PROPERTY LINE  EXISTING PUBLIC FIRE HYDRANT  PRIVATE FIRE HYDRANT—  APPROXIMATE LOCATION  NEW PRIVATE FIRE HYDRANT  METAL FENCE  PATH OF TRAVEL 5% MAX SLOPE 2% MAX CROSS SLOPE  CURB TO BE PAINTED RED |
| \(\psi\) \(\ | LANDSCAPE AREA                                                                                                                                                    |                | PER CIVIL DRAWINGS                                                                                                                                                                                      |

NPFHO

 $\bigcirc$ PIV

FIRE HYDRANT AND OTHER FIRE PROTECTION EQUIPMENT REFER TO SEPARATE SUBMITTAL NPFHO = NEW PUBLIC FIRE HYDRANT BY OTHER NPFH = NEW PRIVATE FIRE HYDRANT BY OTHER PIV = POST INDICATOR VALVE DPIV = DOUBLE CHECK DETECTOR ASSEMBLY FDC = FIRE DEPARTMENT CONNECTION

# PATH OF TRAVEL NOTE:

- \* WITHOUT ANY ABRUPT LEVEL CHANGES EXCEEDING 1/2".
- \* AT LEAST 48" IN WIDTH. \* SURFACE IS STABLE, FIRM AND SLIP RESISTANT.
- \* FREE OF OVERHANGING OBSTRUCTIONS TO 80" MINIMUM AND PROTRUDING OBJECTS GREATER THAN 4" PROJECTION FROM WALL & ABOVE 27" & LESS THAN 80". \* DETECTABLE WARNINGS WITH 36 INCHES MINIMUM IN DEPTH AT CURB RAMPS AND AT HAZARDOUS VEHICULAR AREAS.



HPA, INC. 18831 Bardeen Avenue - ste. #100 Irvine, CA 92612

Tel: 949 • 863 • 1770 email: hpa@hparchs.com



Owner:



18201 Von Karman Ave., Suite. 1170 Irvine, CA 92612 tel: (949) 407. 0100



GLC - SANTA FE SPRINGS BUILDING #4

10840 NORWALK BLVD SANTA FE SPRINGS, CA 90670

Consultants:

PBLA Engineering, INC AIR CONTROL SYSTEMS WALLACE P. JOHNSON

ANDSCAPE SHAMBAUGH & SON, L ILS ENGINEER SOUTHERN CALIFORNIA GEOTECHNICA

GREGG ELECTRIC



Title: OVERALL SITE PLAN

Project Number:

| Date: 01/19/2 | 23 |
|---------------|----|
| Revision:     | _  |
|               |    |
|               | _  |
|               |    |
|               | _  |
|               | _  |
|               |    |
|               | _  |
|               | _  |

Sheet:





#### CITY OF SANTA FE SPRINGS RESOLUTION NO. 229-2023

#### A RESOLUTION OF THE PLANNING COMMISSION OF THE CITY OF SANTA FE SPRINGS REGARDING DEVELOPMENT PLAN APPROVAL CASE NO. 999

WHEREAS, a request was filed for Development Plan Approval (DPA) Case No. 999, to allow the construction of a new 99,847 sq. ft. concrete tilt-up industrial building on property located at 12222 East Florence Avenue and associated parking lot on an adjacent parcel at 10840 Norwalk Boulevard, within the M-2, Heavy Manufacturing, zone; and

WHEREAS, the subject site is comprised of two parcels, measuring approximately 5.03 acres. The first parcel has frontage on the south side of Florence Avenue, with Assessor's Parcel Number of 8009-022-046. The second parcel is located on the east side of Norwalk Boulevard with an Assessor's Parcel Number of 8009-022-039, as shown in the latest rolls of the Los Angeles County Office of the Assessor; and

WHEREAS, the owner and applicant for the proposed Development Plan Approval (DPA Case No. 999) is Goodman Santa Fe Springs SPE LLC; 18201 Von Karman Avenue, CA 92612; and

WHEREAS, the proposed project, which includes the discretionary review of Development Plan Approval Case No. 999, is considered a project as defined by the California Environmental Quality Act (CEQA), Article 20, Section 15378(a); and

WHEREAS, based on the information received from the applicant and staff's assessment, it was found and determined that the proposed project will not have a significant adverse effect on the environment following mitigation; therefore, the City caused to be prepared and proposed to adopt an Initial Study/Mitigated Negative Declaration (IS/MND) for the proposed project; and

WHEREAS, in accordance with CEQA Guidelines §15073 and §15105, the draft Initial Study/Mitigated Negative Declaration was released for the 30-day public review period commencing on October 18, 2022, and concluding on November 17, 2022. A Notice of Intent (NOI) was also provided to the State Clearinghouse, Los Angeles County Clerk, responsible agencies, the City's local CEQA distribution list, and other interested parties requesting a copy of the IS/MND for review and comment; and

WHEREAS, the draft IS/MND was also uploaded to the City's website and available for public review on the City's Environmental Documents webpage (<a href="https://www.santafesprings.org/cityhall/planning/planning/environmental\_documents.as">https://www.santafesprings.org/cityhall/planning/planning/environmental\_documents.as</a> p and a hard copy version of the IS/MND was made available for public review at the City's Planning Department; and

WHEREAS, during the 30-day public review period, the City received a total of one (1) comment letter concerning the draft Initial Study/Mitigated Negative Declaration for the proposed project; and

WHEREAS, the City of Santa Fe Springs Planning and Development Department on March 3, 2023, published a legal notice in the *Whitter Daily News*, a local paper of general circulation, indicating the date and time of the public hearing, and also mailed said public hearing notice on March 2, 2023, to each property owner within a 500-foot radius of the project site in accordance with state law; and

WHEREAS, on March 13, 2023, the City of Santa Fe Springs Planning Commission conducted a duly noticed public hearing and considered public testimony concerning Development Plan Approval Case No. 999; and

WHEREAS, the City of Santa Fe Springs Planning Commission has considered the application, the written and oral staff report, the General Plan and zoning of the subject property, the testimony, written comments, or other materials presented at the Planning Commission Meeting on March 13, 2023, concerning Development Plan Approval Case No. 999.

WHEREAS, the City of Santa Fe Springs Planning Commission conducted a public hearing on the continued item on April 11, 2023, at which time it received additionally testimony concerning Development Plan Approval Case No. 999;

NOW, THEREFORE, be it RESOLVED that the PLANNING COMMISSION of the CITY OF SANTA FE SPRINGS does hereby RESOLVE, DETERMINE, and ORDER AS FOLLOWS:

#### <u>SECTION I.</u> ENVIRONMENTAL FINDINGS AND DETERMINATION

The proposed development is considered a project under the California Environmental Quality Act (CEQA) and as a result, the project is subject to the City's environmental review process. The environmental analysis provided in the Initial Study, including related technical studies, indicated that the proposed project would not result in any significant adverse immitigable impacts on the environment; therefore, the City required the preparation and adoption of a Mitigated Negative Declaration (MND) for the proposed Project. The draft MND, prepared by Blodgett Baylosis Environmental Planning, reflects the independent judgment of the City of Santa Fe Springs, and the City's environmental consultant and is attached hereto as Exhibit B.

The Initial Study determined that the proposed project is not expected to have any significant adverse environmental impacts with mitigations. The following findings can be made regarding the Mandatory Findings of Significance set forth in Section 15065 of the CEQA Guidelines based on the results of this Initial Study:

- The proposed project *will not* have the potential to degrade the quality of the environment.
- The proposed project *will not* have the potential to achieve short-term goals to the disadvantage of long-term environmental goals.
- The proposed project *will not* have impacts that are individually limited, but cumulatively considerable when considering planned or proposed development in the immediate vicinity.
- The proposed project *will not* have environmental effects that will adversely affect humans, either directly or indirectly.

In addition, pursuant to Section 21081(a) of the Public Resources Code, findings must be adopted by the decision-makers coincidental to the approval of a Mitigated Negative Declaration, which relates to the Mitigation Monitoring and Reporting Program. These findings shall be incorporated as part of the decision-makers findings of fact, in response to AB-3180 and in compliance with the requirements of the Public Resources Code. In accordance with the requirements of Section 21081(a) and 21081.6 of the Public Resources Code, the City of Santa Fe Springs can make the following additional findings:

- A mitigation reporting or monitoring program will be required.
- Site plans and/or building plans, submitted for approval by the responsible monitoring agency, shall include the required standard conditions.
- An accountable enforcement agency or monitoring agency shall be identified for the mitigation measures adopted as part of the decision-maker final determination.

Four mitigation measures have been recommended as a means to reduce or eliminate potential adverse environmental impacts related to *Aesthetic Impacts, Cultural Resources, Noise, and Tribal Resources* to insignificant levels. AB-3180 requires that a monitoring and reporting program be adopted for the recommended mitigation measures. A copy of the Mitigation Monitoring and Reporting Program is attached hereto as Exhibit D.

### SECTION II. DEVELOPMENT PLAN APPROVAL FINDINGS

Pursuant to Section 155.739 of the City of Santa Fe Springs Zoning Ordinance, the Planning Commission has made the following findings:

# (A) <u>That the proposed development is in conformance with the overall objectives of this chapter (Chapter 155: Zoning).</u>

The subject site is comprised of two parcels located in the M-2, Heavy Manufacturing, Zone. Pursuant to Section 155.240 of the Zoning Ordinance, "The purpose of the M-2 Zone is to preserve the lands of the city appropriate for heavy industrial uses, to protect these lands from intrusion by dwellings and inharmonious commercial uses, to promote uniform and orderly industrial development, to create and protect property values, to foster an efficient, wholesome and aesthetically pleasant industrial district, to attract and encourage the location of desirable industrial plants, to provide an industrial environment which will be conducive to good employee relations and pride on the part of all citizens of the community and to provide proper safeguards and

appropriate transition for surrounding land uses."

The proposed project is consistent with the purpose of the M-2 Zone in the following manner:

- 1. The land is appropriate for industrial uses based on its zoning, M-2, Heavy Manufacturing.
- 2. The proposed project will result in a new concrete tilt-up speculative industrial building; therefore, the land is being maintained for industrial uses.
- 3. The project involves the construction of a new contemporary concrete tilt-up industrial building on a site that is currently developed with three (3) structures that were built in the early 2000s and associated storage equipment. The assessed value of the property will significantly improve once the project is complete, thus leading to an increase in property values for both the subject property and neighboring properties
- 4. The new industrial building offers new construction with modern amenities (i.e. greater ceiling height, energy efficiency, etc.) that will help to attract local industrial businesses to either locate or otherwise remain in Santa Fe Springs.
- (B) <u>That the architectural design of the proposed structures is such that it will enhance</u> the general appearance of the area and be in harmony with the intent of this chapter.

The proposed ±99,847 sq. ft. concrete tilt-up industrial building and associated parking area will represent a significant enhancement in the appearance of the subject property. Additionally, the proposed development will be attractive and contemporary in design. Architectural elements used to achieve a high-quality design include variations in setback, height, colors, and materials used. The result is an attractive project with a contemporary building that is comparable to other high-quality office/industrial projects here in Santa Fe Springs.

(C) <u>That the proposed structures be considered on the basis of their suitability for their intended purpose and on the appropriate use of materials and on the principles of proportion and harmony of the various elements of the buildings or structures.</u>

As mentioned previously, the proposed concrete-tilt-up industrial building is well suited for a variety of office, manufacturing, and/or warehouse-type users, which is allowed as a permitted use in the M-2 Zone. The proposed building will contain an area designated for warehousing and office use. Furthermore, the location of the truck loading doors will face the east side of the building and all loading activities will be screened from public view. The architectural design will incorporate elements such as a complementary color scheme, vertical reveals, height variations, glazing, and pop-out elements. As designed, the proposed development is suitable for their intended industrial users, and the distinctive design of the building represents the architectural principles of proportion and harmony.

(D) <u>That consideration be given to landscaping, fencing, and other elements of the proposed development to ensure that the entire development is in harmony with the objectives of this chapter.</u>

Extensive consideration has been given to numerous elements of the proposed project to achieve harmony with the City's Zoning Ordinance. The majority of the landscaping will be provided along the perimeter of the associated parking lot along Norwalk Boulevard for maximum aesthetic value. The landscape will be distributed along the north, south, and west perimeter of the proposed building and within portions of the required parking areas. Additionally, the truck wells and dock doors have been strategically placed so that they will not be directly visible from the public right-of-way. Nevertheless, 8'-0" high metal gates with mesh screening will be provided along the north and south side of the proposed building to further screen activities within the truck yard area. Lastly, the proposed trash enclosure has been strategically placed where it is not visible or easily accessible by the public, and where it will have the least impact on adjacent properties.

(E) <u>That it is not the intent of this subchapter to require any particular style or type of</u> architecture other than that necessary to harmonize with the general area.

As stated previously, the proposed building is contemporary in design. The architect used glazing, pop-outs, and variations in height, materials, and colors. The style and architecture of the proposed building is consistent with other high-quality buildings that were recently constructed throughout the City.

(F) That it is not the intent of this subchapter to interfere with architectural design except to the extent necessary to achieve the overall objectives of this chapter.

Pursuant to Section 155.736 of the Zoning Ordinance "The purpose of the development plan approval is to assure compliance with the provisions of this chapter and to give proper attention to the siting of new structures or additions or alterations to existing structures, particularly in regard to unsightly and undesirable appearance, which would have an adverse effect on surrounding properties and the community in general." For the reasons previously mentioned, the Planning Commission believes that proper attention has been given to the location, size, and overall design of the proposed building and related improvements.

(G) As a means of encouraging residential development projects to incorporate units affordable to extremely low-income households and consistent with the city's housing element, the city will waive Planning Department entitlement fees for projects with a minimum of 10% extremely low-income units. For purposes of this section, extremely low-income households are households whose income does not exceed the extremely low-income limits applicable to Los Angeles County, as published and periodically updated by the state's Department of Housing and Community Development pursuant Cal. Health and Safety Code § 50106.

The Planning Commission finds that the proposed project is not a residential

development; therefore, the requirements pertaining to low-income units do not apply.

#### SECTION III. PLANNING COMMISSION ACTION

The Planning Commission hereby adopts Resolution No. 229-2023 to approve and adopt the Final Initial Study/Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program (IS/MND and MMRP) and also approve Development Plan Approval Case No. 999 to allow the construction of a ±99,847 sq. ft. concrete tilt-up industrial building on property located at 12222 East Florence Avenue and associated parking lot on an adjacent parcel at 10840 Norwalk Boulevard, within the M-2, Heavy Manufacturing, Zone, subject to conditions attached hereto as Exhibit A

ADOPTED and APPROVED this 11Th day of APRIL 2023 BY THE PLANNING COMMISSION OF THE CITY OF SANTA FE SPRINGS.

|                                     | Francis Carbajal, Chairperson |
|-------------------------------------|-------------------------------|
|                                     | • • •                         |
|                                     |                               |
| ATTEST:                             |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |
| Tanasa Carrella Diancia a Carrelana |                               |
| Teresa Cavallo, Planning Secretary  |                               |

#### **CONDITIONS OF APPROVAL**

### <u>Development Plan Approval Case No. 999</u> 12222 Florence Avenue and 10840 Norwalk Blvd Santa Fe Springs, CA 90670

APN: 8009-022-046 & 8009-022-039

Approval of the subject Development Plan Approval (DPA) Case No. 999 is to allow the construction of a new 99,847 sq. ft. concrete tilt-up industrial building located at 12222 Florence Avenue, located within the M-2 Heavy Manufacturing zone & associated parking lot on adjacent parcel, located at 10840 Norwalk Boulevard, located within the C4 – Community Commercial Zone.

#### **ENGINEERING / PUBLIC WORKS DEPARTMENT:**

(Contact: Elias Garcia 562-868-0511 x7034)

#### **STREETS**

- 1. That the applicant shall pay a flat fee of \$15,939.00 to reconstruct/resurface the existing street frontage to centerline for Florence Avenue and Norwalk Boulevard.
- 2. That applicant shall remove and replace (1) driveway approach, curb, & gutter per city standard plan R-6.4C along Norwalk Boulevard.
- 3. All oil wells, pipelines, tanks, and related lines within the public right-of-way shall be removed from the right-of-way unless otherwise approved by the City Engineer.
- 4. That adequate "on-site" parking shall be provided per City requirements, and all streets abutting the development shall be posted "No Stopping Any Time." The City will install the offsite signs and the applicant shall pay the actual cost of sign installation.
- 5. The applicant shall reimburse the City for the actual cost for the installation, replacement or modification of street name signs, and traffic control signs, required in conjunction with the development. The City will complete the work.
- 6. That common driveways shall not be allowed unless approved by the City Engineer. Proposed driveways shall be located to clear existing fire hydrants, street lights, water meters, etc.; however, if they cannot be avoided, they must be relocated to a mutually agreeable location per City standards.
- 7. Applicant to relocate the existing driveway approach on Norwalk Boulevard per City Engineer approved plan.

8. The applicant and/or developer shall pay for the design, installation, and inspection of undergrounding overhead utilities on Florence Avenue and Norwalk Boulevard for applicant owned facilities only.

#### **CITY UTILITIES**

- 9. Storm drains, catch basins, connector pipes, retention basin and appurtenances built for this project shall be constructed in accordance with City specifications in Florence Avenue and Norwalk Boulevard. Storm drain plans shall be approved by the City Engineer.
- 10. Fire hydrants shall be installed as required by the Fire Department. Existing public fire hydrants adjacent to the site, if any, shall be upgraded if required by the City Engineer. That the applicant shall pay to the City the entire cost of design, engineering, installation and inspection of Fire hydrants.
- 11. That sanitary sewers shall be constructed in accordance with City specifications to serve the subject development. The plans for the sanitary sewers shall be approved by the City Engineer and LA County Sanitation District. A sewer study (including a sewer flow test) shall be submitted along with the sanitary sewer plans.
- 12. All buildings shall be connected to the sanitary sewers, if applicable.
- 13. That the fire sprinkler plans, which show the proposed double-check valve detector assembly location, shall have a stamp approval from the Planning Department and Public Works Department prior to the Fire Department's review for approval. Disinfection, pressure and bacteriological testing on the line between the street and detector assembly shall be performed in the presence of personnel from the City Water Department. The valve on the water main line shall be operated only by the City and only upon the City's approval of the test results.
- 14. That the applicant shall obtain a Storm Drain Connection Permit for any connection to the storm drain system.
- 15. That the landscape irrigation system shall be connected to reclaimed water, if available, on Florence Avenue. Separate meter(s) shall be installed to accommodate connection or future connection of irrigation systems to the reclaimed water line.
- 16. The applicant shall have an overall site utility master plan prepared by a Registered Civil Engineer showing proposed location of all public water mains, reclaimed water mains, sanitary sewers and storm drains. This plan shall be approved by the City Engineer prior to the preparation of any construction plans for the aforementioned improvements.

#### **TRAFFIC**

17. The currently proposed driveway and site access has been reviewed and approved by the traffic engineer, however, the City reserves the right to potentially prohibit left turns into property at some point in the future if deemed necessary by the City engineer.

#### **PARCEL MAPS**

18. An "Access and Parking Reciprocal Easement Agreement" has been submitted to the City, covering each parcel of the subject property. The document shall be executed and recorded in the Office of the Los Angeles County Recorders. Such Agreement and any CC&Rs shall be subject to the approval of the City Attorney.

#### **FEES**

- 19. That the applicant shall comply with Congestion Management Program (CMP) requirements and provide mitigation of trips generated by the development. The applicant and/or developer will receive credit for the demolition of any buildings that formerly occupied the site. For new developments, the applicant and/or developer cannot meet the mitigation requirements, the applicant and/or developer shall pay a mitigation fee to be determined by the City Engineer for off-site transportation improvements.
- 20. That the applicant shall comply with all requirements of the County Sanitation District, make application for and pay the sewer maintenance fee.
- 21. That the applicant shall pay the water trunkline connection fee of \$3,700 per acre upon application for water service connection or if utilizing any existing water service.

#### **MISCELLANEOUS**

- 22. That a grading plan shall be submitted for drainage approval to the City Engineer. The applicant shall pay drainage review fees in conjunction with this submittal. A professional civil engineer registered in the State of California shall prepare the grading plan.
- 23. That a hydrology study shall be submitted to the City reviewed by the City Engineer for approval. The study shall be prepared by a Professional Civil Engineer.

- 24. That upon completion of public improvements constructed by developers, the developer's civil engineer shall submit mylar record drawings and an electronic file (AutoCAD Version 2019 or higher) to the office of the City Engineer.
- 25. That the applicant shall comply with the National Pollutant Discharge Elimination System (NPDES) program and shall require the general contractor to implement storm water/urban runoff pollution prevention controls and Best Management Practices (BMPs) on all construction sites in accordance with the current MS4 Permit. The applicant will also be required to submit a Certification for the project and will be required to prepare a Storm Water Pollution Prevention Plan (SWPPP).
- 26. The applicant and/or developer shall install portland cement concrete or asphaltic concrete pavement drive approach satisfactory to the City Engineer for the entire width of the driveways for a minimum distance of 50 feet from the back of the drive approach on Florence Avenue and Norwalk Boulevard to be installed by the developer.

# <u>DEPARTMENT OF FIRE - RESCUE (FIRE PREVENTION DIVISION)</u> (Contact: Kevin Yang 562.868-0511 x 3811)

- 27. That the applicant shall comply with the requirements of Section 117.131 of the Santa Fe Springs Municipal Code, Requirement for a Soil Gas Study or Methane Mitigation System, prior to issuance of building permits.
- 28. That interior gates or fences are not permitted across required Department of Fire-Rescue access roadways unless otherwise granted prior approval by the City Department of Fire-Rescue
- 29. That the standard aisle width for onsite emergency vehicle maneuvering shall be 26 feet with a minimum clear height of 13 feet 6 inches. Internal driveways shall have a turning radius of not less than 52 feet. The final location and design of this 26 feet shall be subject to the approval of the City's Fire Chief as established by the California Fire Code. A request to provide emergency vehicle aisle width less than 26 feet shall be considered upon the installation/provision of mitigation improvements approved by the City's Fire Chief
- 30. That prior to submitting plans to the Building Department, a preliminary site plan shall be approved by the Department of Fire-Rescue for required access roadways and on-site fire hydrant locations. The site plan shall be drawn at a scale between 20 to 40 feet per inch. Include on plan all entrance gates that will be installed
- 31. That Knox boxes are required on all new construction. All entry gates shall also be equipped with Knox boxes or Knox key switches for power-activated gates.

32. That signs and markings required by the Department of Fire-Rescue shall be installed along the required Department of Fire-Rescue access roadways.

### **DEPARTMENT OF FIRE: ENVIRONMENTAL PREVENTION:**

(Contact: Eric Scott 562.868.0511 x 3812)

- 33. That prior to issuance of building permits, the applicant shall comply with the applicable conditions below and **obtain notification in writing** from the Santa Fe Springs Department of Fire-Rescue Environmental Protection Division (EPD) that all applicable conditions have been met:
  - a. At a minimum, the applicant must conduct an All Appropriate Inquiries (AAI) Investigation (formerly called a Phase I Environmental Site Assessment) in accordance with ASTM Standard E1527-05. The applicant shall provide the EPD with a copy of the AAI investigation report for review and approval. If the AAI investigation identifies a release, or potential release at the site, the applicant must comply with part b.
  - b. An environmental site assessment may be required based on the information presented in the AAI investigation report. The environmental site assessment report must be reviewed and approved by the EPD in writing. Should the report indicate that contaminate levels exceed recognized regulatory screening levels, remedial action will be required. A remedial action work plan must be approved by the authorized oversight agency before implementation. Once remedial action is complete, a final remedial action report must be submitted and approved by the oversight agency.
  - c. Soil Management Plan & Report. A Soils Management Plan (SMP) which addresses site monitoring and a contingency plan for addressing previously unidentified contamination discovered during site development activities may be required. If required, the SMP shall be submitted to the EPD for review and approval before grading activities begin. Once grading is complete, a SMP report must be submitted to the EPD for final written approval. Building plans will not be approved until the SMP report has been approved by the EPD in writing.
- 34. <u>Permits and approvals.</u> That the applicant shall, at its own expense, secure or cause to be secured any and all permits or other approvals which may be required by the City and any other governmental agency prior to conducting environmental assessment or remediation on the property. Permits shall be secured prior to beginning work related to the permitted activity.
- 35. That all abandoned pipelines, tanks and related facilities shall be removed unless approved by the City Engineer and Fire Chief. Appropriate permits for such work shall be secured before abandonment work begins.

36. That the applicant shall comply with all Federal, State and local requirements and regulations included, but not limited to, the Santa Fe Springs City Municipal Code, California Fire Code, Certified Unified Program Agency (CUPA) programs, the Air Quality Management District's Rules and Regulations and all other applicable codes and regulations.

### **POLICE SERVICES DEPARTMENT:**

(Contact: Lou Collazo at 562.409.1850 x 3335)

- 37. That the applicant shall submit and obtain approval of a proposed lighting (photometric) plan for the property from the City's Department of Police Services. The photometric plan shall be designed to provide adequate lighting (minimum of 1 foot candle power) throughout the subject property. Further, all exterior lighting shall be designed/installed in such a manner that light and glare are not transmitted onto adjoining properties in such concentration/quantity as to create a hardship to adjoining property owners or a public nuisance. The photometric plans shall be submitted to the designated contact person from the Department of Police Services in conjunction with the submittal of the Electrical Plans. PDF formatted plans are acceptable and shall be emailed luiscollazo@santafesprings.org.
- 38. That the applicant shall provide an emergency phone number and a contact person of the person or persons involved in the supervision of the construction to the Department of Police Services. The name, emergency telephone number, fax number and e-mail address of that person shall be provided to the Department of Police Services (Attn: Lou Collazo) no later than 60 days from the date of approval by the Planning Commission. Emergency information shall allow emergency service to reach the applicant or their representative any time, 24 hours a day. Information will be submitted to the emergency dispatch operators serving Police and Fire agencies.
- 39. That in order to facilitate the removal of unauthorized vehicles parked on the property (after construction of the building is completed), the applicant shall post, in plain view and at each entry to the property, a sign not less than 17" wide by 22" long. The sign shall prohibit the public parking of unauthorized vehicles and indicate that unauthorized vehicles will be removed at the owner's expense and also contain the California Vehicle Section Code 22658 that permits this action. The sign shall also contain the telephone number of the local law enforcement agency (Police Services Center (562) 409-1850). The lettering within the sign shall not be less than one inch in height. The applicant shall contact the Police Services Center for an inspection no later than 30 days after the project has been completed and prior to the occupancy permit being issued.
- 40. That all tenants occupying the proposed industrial buildings are to be notified that all respective work shall be conducted inside at all times including, but not limited to, all loading and unloading of trucks and trailers. Items and/or merchandise

shall not be left outside of the building-awaiting loading. Outdoor storage is prohibited without prior approval from both Police Services, Planning, and Fire Department.

- 41. That the vehicles are not to block traffic at any time. It is the responsibility of the on-site manager to prevent or discourage this activity; drivers are subject to citations.
- 42. That off-street parking area shall not be reduced or encroached upon at any time.
- 43. That the proposed buildings, including any lighting, fences, walls, cabinets, and poles shall be maintained in good repair, free from trash, debris, litter and graffiti and other forms of vandalism. Graffiti shall be removed or painted over with a matching paint color within 72-hours of occurrence. Any damage from any such cause shall be repaired within 5-days of occurrence, weather permitting, to minimize dangerous conditions and/or visual blight
- 44. That during the construction phase of the proposed project, the contractor shall provide an identification number (i.e. address number) at each building and/or entry gate to direct emergency responders in case of an emergency. The identification numbers may be painted on wood boards and fastened to the temporary construction fence. The boards may be removed after each building has been identified with their individual permanent number address. DO NOT PAINT NUMBERS ON THE BUILDING.
- 45. That it shall be the responsibility of the job-supervisor to maintain the job site in a clean and orderly manner. Dirt, dust, and debris that has migrated to the street or neighboring properties shall be immediately cleaned. Porta-potties, or equal, shall not be visible from the public street and maintained on a regular basis.
- 46. That all construction debris shall placed in trash/recycle bins at the end of every work day and shall not be left out visible from public view.
- 47. That the property owner and/or lease agent shall notify any potential tenants and/or customers that they are mandated to comply with the ambient noise requirements as required by Santa Fe Springs Zoning Code Section 155.424 and Performance Standards set forth in Sections 155.415 through 155.433 of the City's Zoning Ordinance.
- 48. That the property owner and/or lease agent shall notify any potential tenants that the parking areas and their respective aisles and/or Fire Lanes shall not be reduced or encroached upon with outdoor storage.
- 49. That the applicant shall work with Police Services, Building, and Fire Department to find a solution to effectively identify the site along both the Norwalk Boulevard and Florence Avenue street frontages.

- 50. That trucks and/or trailers owned by the Applicant and/or contracted shall not be backed-up onto the street, block traffic, park, stage, or otherwise queue on the street at any time. The Applicant and/or the acting site manager shall be responsible for making sure that this condition is complied with at all times.
- 51. That the Applicant and/or their tenant be aware that SFSMC §72.16 prohibits the parking of semi-trailers or trailers on any street or alley unless such vehicle is, at all times while parked, attached to a truck or vehicle capable of moving such semi-trailer or trailer upon public streets and highways.
- 52. That the on-site paving shall be maintained free of potholes or other similar damage and the Applicant shall make repairs within 72 hours of identifying any pavement deficiencies.
- 53. That the parking markings (parking striping, directional arrows, etc.) shall be maintained at all times and re-painted when they become faded.

#### **WASTE MANAGEMENT:**

(Contact: Maribel Garcia 562.868.0511 x7509)

- 54. The applicant shall comply with Section 50.51 of the Municipal Code, which prohibits any business or residents from contracting any solid waste disposal company that does not hold a current permit from the City.
- 55. All projects are subject to the requirements of Chapter 50 to reuse or recycle 75% of the project waste. For more information, please contact the City's Environmental Consultant, MuniEnvironmental at (562) 432-3700.
- 56. The applicant shall comply with Public Resource Code, Section 42900 et seq. (California Solid Waste Reuse and Recycling Access Act of 1991) as amended, which requires each development project to provide adequate storage area for the collection/storage and removal of recyclable and green waste materials.

### **PLANNING AND DEVELOPMENT DEPARTMENT:**

(Contact: Claudia Jimenez 562.868.0511 x7356)

- 57. This approval shall allow the applicant, Goodman Santa Fe Springs SPE LLC to construct, operate, and maintain a new approximately 99,847 sq. ft. concrete tilt-up industrial building on the subject property located at 12222 Florence Avenue (APN: 8009-022-046) and the adjacent parking lot located at 10840 Norwalk Boulevard (APN: 8009-022-039).
- 58. The applicant shall comply with the City's "Heritage Artwork in Public Places Program" in conformance with City Ordinance No. 1054.

- 59. The subject property is located within the "Methane Zone". As a result, the applicant shall therefore indicate the subject property is located within the Methane Zone on the first page of the building construction plans as well as the MEPs that are submitted to the County of Los Angeles. Said indication shall be clearly painted with a minimum front size of 20 point.
- 60. To prevent the travel of combustible methane gas into any structure, all slab or foundation penetrations, including plumbing, communication, and electrical penetrations, must be sealed with an appropriate material per the recommendation of the methane study.
- 61. The Mitigation Monitoring and Reporting Program, which was prepared for the proposed project and adopted by the Planning Commission upon completion of the Initial Study/Mitigated Negative Declaration, shall be made part of the conditions of approval for the subject development on the subject property. The Mitigation Monitoring and Reporting Program is listed as an attachment to this staff report.
- 62. The applicant shall be responsible for implementing mitigation measures pursuant to the Mitigation Monitoring and Reporting Program and provide all necessary documentation. Planning Department staff will verify compliance prior to the issuance of the Certificate of Occupancy. *Mitigations that require on-going monitoring shall be reported to the Planning Department every six (6) months.*
- 63. The applicant shall implement a dust control program for air quality control. The program shall ensure that a water vehicle for dust control operations is kept readily available at all times during construction. The developer shall provide the City Engineer and Building Official with the name, telephone number and e-mail address of the person directly responsible for dust control and operation of the vehicle.
- 64. Prior to the issuance of Building Permits, the applicant shall obtain an Office Trailer Permit for any use of mobile office trailers during the construction process.
- 65. Secure fencing around the construction property with locking gates and appropriate lighting shall be installed during construction to prevent trespassing and theft.
- 66. It shall be unlawful for any person to operate equipment or perform any outside construction or repair work on buildings, structures, or projects, other than emergency work, between 7:00 p.m. on one day and 7:00 a.m. of the following day, if such maintenance activity produces noise above the ambient levels as identified in the City's Zoning Ordinance.

- 67. The applicant shall be responsible for reviewing and/or providing copies of the required conditions of approval to his/her architect, engineer, contractor, tenants, etc. Additionally, the conditions of approval contained herein shall be made part of the construction drawings for the proposed development. Construction drawings shall not be accepted for Plan Check without the conditions of approval incorporated into the construction drawings.
- 68. The applicant shall submit Mechanical plans that include a roof plan that shows the location of all roof mounted equipment. All roof-mounted mechanical equipment and/or duct work which projects above the roof or roof parapet of the proposed development and is visible from adjacent property or a public street shall be screened by an enclosure which is consistent with the architecture of the building and approved by the Director of Planning or designee.
  - a. To illustrate the visibility of equipment and/or duct work, the following shall be submitted along with the Mechanical Plans:
    - i. A roof plan showing the location of all roof-mounted equipment;
    - ii. Elevations of all existing and proposed mechanical equipment; and
    - iii. A line-of-sight drawing or a building cross-section drawing which shows the roof-mounted equipment and its relation to the roof and parapet lines.

NOTE: line-of sight drawing and/or building cross section must be scaled.

- 69. The applicant agrees and understands that any existing overhead utilities within the development shall be placed underground.
- 70. All fences, walls, gates and similar improvements for the proposed development shall be subject to the prior approval of the Fire Department and the Department of Planning and Development.
- 71. Sufficient number of approved outdoor trash enclosures shall be provided for the development subject to the approval of the Director of Planning or designee (Calculations are subject to change). All outdoor trash enclosures shall provide a solid roof cover. (Please see L.A. County Department Public Works handout).
- 72. All street-facing roof drains shall be provided along the interior walls and not along the exterior of the building.
- 73. The proposed development shall be constructed of quality material and any material shall be replaced when and if the material becomes deteriorated, warped, discolored or rusted.
- 74. The Department of Planning and Development requires that the double-check detector assembly be placed as far back from the property line as practical, screened by shrubs or other materials, and painted forest green. All shrubs shall

be planted a minimum distance of two (2) feet surrounding the detector assembly; however, the area in front of the OS and Y valves shall not be screened. The screening shall also only be applicable to the double-check detector assembly and shall not include the fire department connector (FDC). Notwithstanding, the Fire Marshall shall have discretionary authority to require the FDC to be located a minimum distance from the double-check detector assembly. The bottom of the valve shut off wheel shall be located a maximum of two (2) feet above ground.

- 75. That all Reduced Pressure Backflow preventer shall be installed in a backflow prevention cage on a concrete pad. The backflow preventer shall be painted "hunter green." Please see All-Spec Enclosure Inc., stainless steel tubular backflow preventer. The enclosure shall be lockable, weather resistant and vandal proof. The location shall be near the water meter in the landscape area. Note: See Public Works Backflow Prevention Enclosure standard W-20.
- 76. The applicant shall submit for approval a detailed landscape and automatic irrigation plan pursuant to the Landscaping Guidelines of the City. Said landscape plan shall indicate the location and type of all plant materials, existing and proposed, shrubs designed to fully screen the interior yard and parking areas from public view, and minimum 24" box trees along the street frontage. Said plans shall be consistent with AB 1881 (Model Water Efficient Landscape Ordinance). NOTE: Staff shall not approve the landscaping and irrigation plan without first reviewing and approving the civil drawings, specifically as it pertains to the landscaping and irrigation plan (i.e., location and size of riprap, bio-swales, areas of infiltration trenches, etc.)
- 77. The landscaped areas shall be provided with a suitable, fixed, permanent and automatically controlled method for watering and sprinkling of plants. This operating sprinkler system shall consist of an electrical time clock, control valves, and piped water lines terminating in an appropriate number of sprinklers to insure proper watering periods and to provide water for all plants within the landscaped area. Sprinklers used to satisfy the requirements of this section shall be spaced to assure complete coverage of all landscaped areas. Said plan shall be consistent with AB 1881 (Model Water Efficient Landscape Ordinance).
- 78. Upon completion of the landscaping improvements, said landscaped areas shall be maintained in a neat, clean, orderly and healthful condition. This is meant to include proper pruning, mowing of lawns, weeding, and removal of litter, fertilizing, and replacement of plants when necessary and the regular watering of all plantings.
- 79. The applicant shall submit a lighting program that is integrated into the overall property, landscape design and building design. Lighting shall be used to highlight prominent building features such as entries and other focal points. Up-

- lighting can also be used as a way to enhance the texture of plants and structures, to create a sense of height in a landscape design
- 80. Transformers shall not be located within the front yard setback area. The location of the transformer(s) shall be subject to the prior approval of the Director of Planning or designee. The electrical transformer shall be screened with shrubs consistent with Southern California Edison's Guidelines which requires three foot clearance on sides and back of the equipment, and eight foot clearance in front of the equipment. Additionally, the landscaping irrigation system shall be installed so that they do not spray on equipment. (A copy of the Guideline is available at the Planning Department.)
- 81. The applicant shall be responsible for ensuring that future tenants do not allow commercial vehicles, trucks and/or truck tractors to queue on Florence Avenue and Norwalk Boulevard, use Florence Avenue and Norwalk Boulevard as a staging area, or to back-up onto the street from the subject property.
- 82. No portion of the required off-street parking and driveway areas shall be used for outdoor storage of any type, unless prior written approval is obtained from the Director of Planning and the Fire Marshall.
- 83. That all parking areas shall be striped in accordance with the proposed site plan, as submitted by the applicant and on file with this case. The development shall continuously provided the required amount of parking stalls for both parcels, at a minimum of 149 parking stalls shall be provided.
- 84. All parking stalls shall be legibly marked on the pavement. Additionally, all compact spaces shall be further identified by having the words "Compact" or comparable wording legibly written on the pavement, wheel stop or on a clearly visible sign.
- 85. That if the proposed building is later subdivided and deemed to be a multi-tenant building by the City of Santa Fe Springs Planning Department, the applicant shall provide the Planning Department with a modified the parking layout to satisfy the City's parking requirement for a multi-tenant building prior to the issuance of any subsequent business license and/or building permit related to the secondary tenant(s)
- 86. The applicant shall provide a bulletin board, display case, or kiosk to display transportation information where the greatest number of employees are likely to see it. Information shall include, but is not limited to:
  - 1. Current maps, routes and schedules for public transit routes serving the site; and
  - 2. Telephone numbers for referrals on transportation including numbers for the regional ridesharing agency and local

- transit operators; and
- 3. Ridesharing promotional material supplied by commuter-oriented organizations; and
- 4. Bicycle route and facility information, including regional/local bicycle maps and bicycle safety information; and
- 5. A listing of facilities available for carpoolers, vanpoolers, bicyclists, transit riders and pedestrians at the site. This is required to both meet the requirements of Section 155.502 (D) of the Zoning Ordinance and also a goal identified within the City's General Plan Circulation Element.
- 87. Preferential parking spaces shall be reserved for potential carpool/vanpool vehicles without displacing handicapped and customer parking needs. Vanpool space(s) shall be legibly marked on the pavement or identified by a sign and also conveyed to employees through the required transportation information board. The preferential carpool/vanpool parking shall be identified on the site plan at the time of plan check submittal. This is required to both meet the requirements of Section 155.502 (D) of the Zoning Ordinance and also a goal identified within the City's General Plan Circulation Element.
- 88. An area shall be designate for bicycle parking and bicycle racks shall be provided. Bike racks shall be provided to accommodate bicycles at a ratio of 4 bicycles for first 50,000 square feet and 1 bicycle for each additional 50,000 square feet. This is required to both meet the requirements of Section 155.502 (D) of the Zoning Ordinance and also a goal identified within the City's General Plan Circulation Element.
- 89. There shall be a safe and convenient zone in which carpool/vanpool vehicles may deliver or board their passengers. Additionally, there shall be sidewalks or other designated pathways following direct and safe routes from external pedestrian circulation system to each building in the development and safe and convenience access from the external circulation system to bicycle parking facilities on-site. This is required to both meet the requirements of Section 155.502 (D) of the Zoning Ordinance and also a goal identified within the City's General Plan Circulation Element.
- 90. The Department of Planning and Development shall first review and approve all sign proposals for the development. The sign proposal (plan) shall include a site plan, building elevation on which the sign will be located, size, style and color of the proposed sign. All drawings shall be properly dimensioned and drawn to scale on 11" x 17" maximum-size paper. All signs shall be installed in accordance with the sign standards of the Zoning Ordinance and the Sign Guidelines of the City.
- 91. Prior to issuance of building permits, the applicant shall comply with the following conditions to the satisfaction of the City of Santa Fe Springs:

#### a. Covenants.

- 1. The applicant shall provide a written covenant to the Planning Department that, except as applicant may have otherwise disclosed to the City, Commission, Planning Commission or their applicant employees. writing, has investigated in environmental condition of the property and does not know, or have reasonable cause to believe, that (a) any crude oil, hazardous substances or hazardous wastes, as defined in state and federal law, have been released, as that term is defined in 42 U.S.C. Section 9601 (22), on, under or about the Property, or that (b) any material has been discharged on, under or about the Property that could affect the quality of ground or surface water on the Property within the meaning of the California Porter-Cologne Water Quality Act, as amended, Water Code Section 13000, et seg
- 2. The applicant shall provide a written covenant to the City that, based on reasonable investigation and inquiry, to the best of the applicant's knowledge, it does not know or have reasonable cause to believe that it is in violation of any notification, remediation or other requirements of any federal, state or local agency having jurisdiction concerning the environmental conditions of the Property.
- b. The applicant understands and agrees that it is the responsibility of the applicant to investigate and remedy, pursuant to applicable federal, state and local law, any and all contamination on or under any land or structure affected by this approval and issuance of related building permits. The City, Commission, Planning Commission or their employees, by this approval and by issuing related building permits, in no way warrants that said land or structures are free from contamination or health hazards.
- c. The applicant understands and agrees that any representations, actions or approvals by the City, Commission, Planning Commission or their employees do not indicate any representation that regulatory permits, approvals or requirements of any other federal, state or local agency have been obtained or satisfied by the applicant and, therefore, the City, Commission, Planning Commission or their employees do not release or waive any obligations the applicant may have to obtain all necessary regulatory permits and comply with all other federal, state or other local agency regulatory requirements. The applicant, not the City, Commission, Planning Commission or their employees will be responsible for any and all penalties, liabilities, response costs and expenses arising from any failure of the applicant to comply with such regulatory requirements.
- 92. That the owner/applicant shall require and verify that all contractors and subcontractors have successfully obtained a Business License with the City of Santa

Fe Springs prior to beginning any work associated with the subject project. A late fee and penalty will be accessed to any contractor or sub-contractor that fails to obtain a Business License and a Building Permit final or Certificate of Occupancy will not be issued until all fees and penalties are paid in full. For answers to questions or inquiries surrounding the business license process, please call (562) 264-5219 to speak to a customer service representative.

- 93. Prior to occupancy of the property/buildings, the applicant and/or his tenant(s), shall obtain a valid business license (AKA Business Operation Tax Certificate), and submit a Statement of Intended Use. Both forms, and other required accompanying forms, may be obtained on the City's website (https://santafesprings.hdlgov.com/).
- 94. The subject development shall be constructed substantially in accordance with the plot plan, floor plan, and elevations submitted by the applicant and on file with the case. Any modification shall be subject to the review and approval of the Director of Planning or his/her designee.
- 95. The final site plan, floor plan and elevations of the proposed development and all other appurtenant improvements, textures and color schemes shall be subject to the final approval of the Director of Planning.
- 96. That prior to the issuance of the Certificate of Occupancy, the applicant shall provide certification from the Landscape Architect of record that the plant installation on the Site are in accordance with the approval planting an irrigation plan.
- 97. The applicant understands and agrees that if any term or condition of this approval is determined in whole or in part to be invalid or unenforceable, such determination shall not affect the validity or enforceability of any other term or condition contained herein.
- 98. The applicant understands and agrees that this approval is subject to modification or revocation as set forth in the Santa Fe Springs Municipal Code. Grounds for modification or revocation include, but are not limited to, Applicant's failure to comply with any condition of approval contained herein.
- 99. The applicant understands and agrees that if changes to the original plans (submitted and on file with the subject case) are required during construction, revised plans shall be provided to the Planning Department for review and approval prior to the implementation of such changes. Please note that certain changes may also require approvals from other departments.
- 100. All other requirements of the City's Zoning Ordinance, Building Code, Property Maintenance Ordinance, State and City Fire Code and all other applicable County, State and Federal regulations and codes shall be complied with.

- 101. Unless otherwise specified in the action granting Development Plan Approval, said approval which has not been utilized within a period of 12 consecutive months from the effective date shall become null and void. Also the abandonment or nonuse of a development plan approval and any privileges granted thereunder shall become null and void. However, an extension of time may be granted by Commission or Council action.
- 102. The applicant shall indemnify, protect, defend, and hold harmless, the City, and/or any of its officials, officers, employees, agents, departments, agencies, and instrumentalities thereof, from any and all claims, demands, law suits, writs of mandamus, and other actions and proceedings (whether legal, equitable, declaratory, administrative or adjudicatory in nature), and alternative dispute resolutions procedures (including, but not limited to arbitrations, mediations, and other such procedures), (collectively "Actions"), brought against the City, and/or any of its officials, officers, employees, agents, departments, agencies, and instrumentalities thereof, that challenge, attack, or seek to modify, set aside, void, or annul, the any action of, or any permit or approval issued by, the City and/or any of its officials, officers, employees, agents, departments, agencies, and instrumentalities thereof (including actions approved by the voters of the City), for or concerning the project, whether such Actions are brought under the California Environmental Quality Act, the Planning and Zoning Law, the Subdivisions Map Act, Code of Civil Procedure Section 1085 or 1094.5, or any other state, federal, or local statute, law, ordinance, rule, regulation, or any decision of a court of competent jurisdiction. In addition, the applicant shall reimburse the City, its officials, officers, employees, agents, departments, agencies, for any Court costs and attorney's fees which the City, its agents, officers, or employees may be required by a court to pay as a result of such action. It is expressly agreed that the City shall have the right to approve, which approval will not be unreasonably withheld, the legal counsel providing the City's defense, and that applicant shall reimburse City for any costs and expenses directly and necessarily incurred by the City in the course of the defense. City shall promptly notify the applicant of any such claim, action or proceeding, and shall cooperate fully in the defense thereof.

I understand and hereby agree to comply with the attached Conditions of Approval for DPA 999.

| Jeff Hamilton                    |   |
|----------------------------------|---|
| (Name of Applicant – Print name) | _ |

| Sff Hanish.                     | Date | 2/27/2023 |  |
|---------------------------------|------|-----------|--|
| (Signature of Authorized Agent) |      |           |  |

# INITIAL STUDY & MITIGATED NEGATIVE DECLARATION GOODMAN SANTA FE SPRINGS SPE LLC PROJECT

10840 NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA



**LEAD AGENCY:** 

CITY OF SANTA FE SPRINGS
PLANNING AND DEVELOPMENT DEPARTMENT
11710 TELEGRAPH ROAD
SANTA FE SPRINGS, CALIFORNIA 90670

REPORT PREPARED BY:

BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING 2211 S. HACIENDA BOULEVARD, SUITE 107 HACIENDA HEIGHTS, CALIFORNIA 91745

**SEPTEMBER 12**, 2022

| 1004011 | OKWIKK DEV D | CITY OF SANTA | I E OI KINGS |  |
|---------|--------------|---------------|--------------|--|
|         |              |               |              |  |
|         |              |               |              |  |
|         |              |               |              |  |

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

### MITIGATED NEGATIVE DECLARATION

**PROJECT NAME:** Goodman Santa Fe Springs SPE LLC Project.

**APPLICANT:** Goodman Santa Fe Springs SPE LLC, 18201 Von Karman Avenue. Suite 1170, Irvine,

California 92612.

SITE ADDRESS: 10840 Norwalk Blvd, Santa Fe Springs, California, 90670.

**CITY/COUNTY:** Santa Fe Springs, Los Angeles County.

**DESCRIPTION:** The City of Santa Fe Springs, in its capacity as the Lead Agency, is reviewing an

application that would involve the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

zoned as Commercial

**FINDINGS:** The environmental analysis provided in the attached Initial Study indicates that the proposed project will not result in any significant adverse impacts with the

implementation of the appropriate mitigation measures. For this reason, the City of Santa Fe Springs determined that a *Mitigated Negative Declaration* is the appropriate CEQA document for the proposed project. The following findings may be made based

on the analysis contained in the attached Initial Study:

prehistory.

• The proposed project *will not* have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of an endangered, rare or threatened species or eliminate important examples of the major periods of California history or

• The proposed project *will not* have impacts that are individually limited, but cumulatively considerable.

### INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJECT 10840 NORWALK BLVD• CITY OF SANTA FE SPRINGS

• The proposed project *will not* have environmental effects which will cause substantially adverse effects on human beings, either directly or indirectly.

The environmental analysis is provided in the attached Initial Study prepared for the proposed project. The project is also described in greater detail in the attached Initial Study.

| Signature                                    | Date |
|----------------------------------------------|------|
| City of Santa Fe Springs Planning Department | ·    |



### TABLE OF CONTENTS

| Sectio | n      |                                     | Page  |
|--------|--------|-------------------------------------|-------|
| 1.0    | Intr   | oduction                            | 7     |
|        | 1.1    | Purpose of the Initial Study        | ,     |
|        | 1.2    | Initial Study's Organization        |       |
| 2.0    | Proi   | ject Description                    | 9     |
|        | 2.1    | Project Overview                    | _     |
|        | 2.2    | Project Location                    |       |
|        | 2.3    | Environmental Setting               |       |
|        | 2.4    | Project Description                 |       |
|        | 2.5    | Discretionary Actions               |       |
| 3.0    | Env    | ironmental Analysis                 | 25    |
| ·      | 3.1    | Aesthetic                           | _     |
|        | 3.2    | Agricultural and Forestry Resources | 29    |
|        | 3.3    | Air Quality                         |       |
|        | 3.4    | Biological Resources                | _     |
|        | 3.5    | Cultural Resources                  | •     |
|        | 3.6    | Energy                              |       |
|        | 3.7    | Geology and Soils                   | • • • |
|        | 3.8    | Greenhouse Gas Emissions            | _     |
|        | 3.9    | Hazards and Hazardous Materials     |       |
|        | 3.10   | Hydrology and Water Quality         |       |
|        | 3.11   | Land Use and Planning               | _     |
|        | 3.12   | Mineral Resources                   | 70    |
|        | 3.13   | Noise                               | 73    |
|        | 3.14   | Population and Housing              | 79    |
|        | 3.15   | Public Services                     | 81    |
|        | 3.16   | Recreation                          | 84    |
|        | 3.17   | Transportation and Circulation      | 87    |
|        | 3.18   | Tribal Cultural Resources           | 91    |
|        | 3.19   | Utilities and Service Systems       | 94    |
|        | 3.20   | Wildfire                            | 98    |
|        | 3.21   | Mandatory Findings of Significance  | 102   |
| 4.0    | Con    | clusions                            | 103   |
| •      | 4.1    | Findings                            | •     |
|        | 4.2    | Mitigation Measures                 | _     |
| 5.0    | Refe   | erences                             | 105   |
| J. J   | 5.1    | Preparers                           | _     |
|        | 5.2    | References                          | _     |
|        |        |                                     | _     |
| App    | endic  | es                                  | 107   |
| Appe   | ndix A | - Air Quality Worksheets            | 109   |
|        |        | - Utility Worksheets                |       |
|        |        | - Traffic Study                     |       |

| THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK. |  |
|----------------------------------------------|--|
|                                              |  |
|                                              |  |
|                                              |  |

INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJECT 10840 NORWALK BLVD• CITY OF SANTA FE SPRINGS

### SECTION 1 - INTRODUCTION

#### 1.1 PURPOSE OF THE INITIAL STUDY

This Initial Study evaluates the environmental impacts involved in the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upperlevel mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.1

The City of Santa Fe Springs is the designated Lead Agency for the proposed project and will be responsible for the project's environmental review. The operation of the proposed development is considered to be a project under the California Environmental Quality Act (CEQA) and, as a result, the project is subject to the City's environmental review process. The project applicant is Goodman Santa Fe Springs SPE LLC, 18201 Von Karman Avenue. Suite 1170, Irvine, California 92612.

As part of the proposed project's environmental review, the City of Santa Fe Springs has authorized the preparation of this Initial Study. The primary purpose of CEQA is to ensure that decision-makers and the public understand the environmental implications of a specific action or project. An additional purpose of this Initial Study is to ascertain whether the proposed project will have the potential for significant adverse impacts on the environment once it is implemented. Pursuant to the CEQA Guidelines, additional purposes of this Initial Study include the following:

- To provide the City of Santa Fe Springs with information to use as the basis for deciding whether to prepare an Environmental Impact Report (EIR), Mitigated Negative Declaration (MND), or Negative Declaration (ND) for a project;
- To facilitate the project's environmental assessment early in the design and development of the proposed project;
- To eliminate unnecessary EIRs; and,
- To determine the nature and extent of any impacts associated the proposed project

Although this Initial Study was prepared with consultant support, the analysis, conclusions, and findings made as part of its preparation fully represent the independent judgment and position of the City of Santa

SECTION 1 ● INTRODUCTION

<sup>&</sup>lt;sup>1</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

Fe Springs in its capacity as the Lead Agency. The City determined, as part of this Initial Study's preparation, that a Mitigated Negative Declaration is the appropriate environmental document for the proposed project's CEQA review. This Initial Study and the Notice of Intent to Adopt a Mitigated Negative Declaration will be forwarded to responsible agencies, trustee agencies, and the public for review and comment. A 30-day public review period will be provided to allow these entities and other interested parties to comment on the proposed project and the findings of this Initial Study. Questions and/or comments should be submitted to the following individual:

Claudia L. Jimenez, Assistant Planner
City of Santa Fe Springs Planning and Development Department
11710 Telegraph Road
Santa Fe Springs, California 90670

#### 1.2 Initial Study's Organization

The following annotated outline summarizes the contents of this IS:

- Section 1 Introduction, provides the procedural context surrounding this IS preparation and insight into its composition.
- Section 2 Project Description, provides an overview of the existing environment as it relates to the project area and describes the proposed project's physical and operational characteristics.
- Section 3 Environmental Analysis, includes an analysis of potential impacts associated with the construction and the operation of the proposed project.
- Section 4 Conclusions, summarizes the findings of the analysis.
- Section 5 References, identifies the sources used in the preparation of this IS/MND.



Section 1 ● Introduction Page 8

### **SECTION 2 - PROJECT DESCRIPTION**

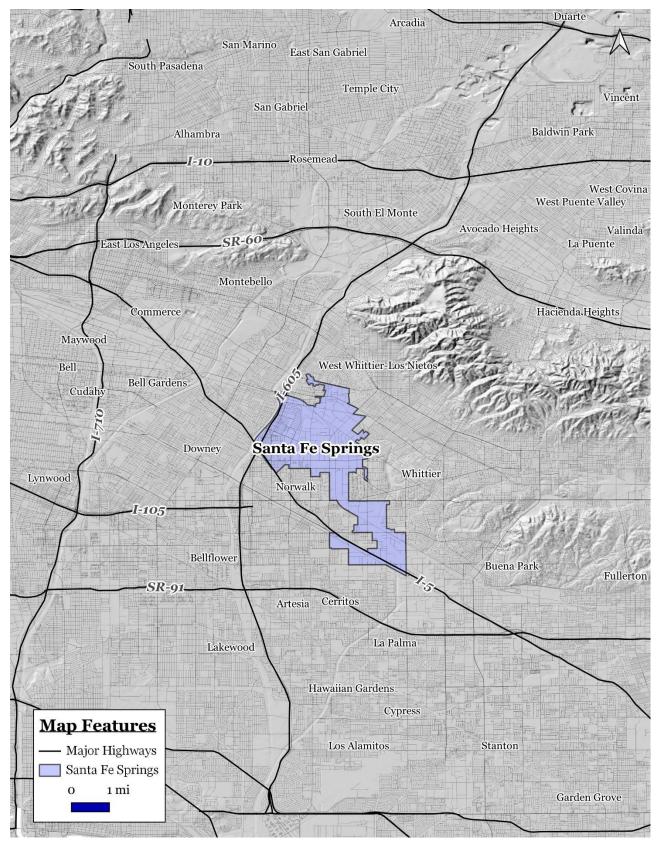
#### 2.1 PROJECT OVERVIEW

This Initial Study evaluates the environmental impacts involved in the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upperlevel mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.2

### 2.2 PROJECT LOCATION

The project site is located in the north-central portion of the City of Santa Fe Springs along the east side of Norwalk Boulevard and south of Florence Avenue. Santa Fe Springs is located in southeastern Los Angeles County, approximately eight miles southeast of downtown city of Los Angeles. The City is bounded by the cities of La Mirada and Norwalk on the south, Downey on the west, an unincorporated Los Angeles County area referred to a West Whittier on the north, and the City of Whittier on the east. Major physiographic features within the surrounding area include the San Gabriel River, located approximately 1.9 miles to the west; the Montebello Hills, located approximately 6.0 miles to the north; the Puente Hills, located approximately 9.0 miles to the northeast; and, the San Gabriel Mountains, located approximately 14.5 miles to the north.3

Regional access to Santa Fe Springs is possible from two area freeways: the Santa Ana Freeway (Interstate 5 or I-5) and the San Gabriel River Freeway (Interstate 605/I-605). The I-5 Freeway extends along the city's western and southern portions in a northwest-southeast orientation and the I-605 Freeway extends along the city's western side in a southwest-northeast orientation. 4 The location of Santa Fe Springs in a regional context is shown in Exhibit 2-1. A citywide map is provided in Exhibit 2-2.


The project site's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. Vehicular access to the project site is currently available from Norwalk Boulevard and Florence Avenue. The Assessor Parcel Numbers (APN) applicable to the site are 8009-022-046 and 8009-022-039. The site's latitude/longitude is 33.933835, -118.071593.5 A local map is provided in Exhibit 2-3.

5 Ibid.

<sup>&</sup>lt;sup>2</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>3</sup> Google Maps. Website Accessed July 18,2022.

<sup>4</sup> Ibid.



### EXHIBIT 2-1 REGIONAL LOCATION

SOURCE: QUANTUM GIS

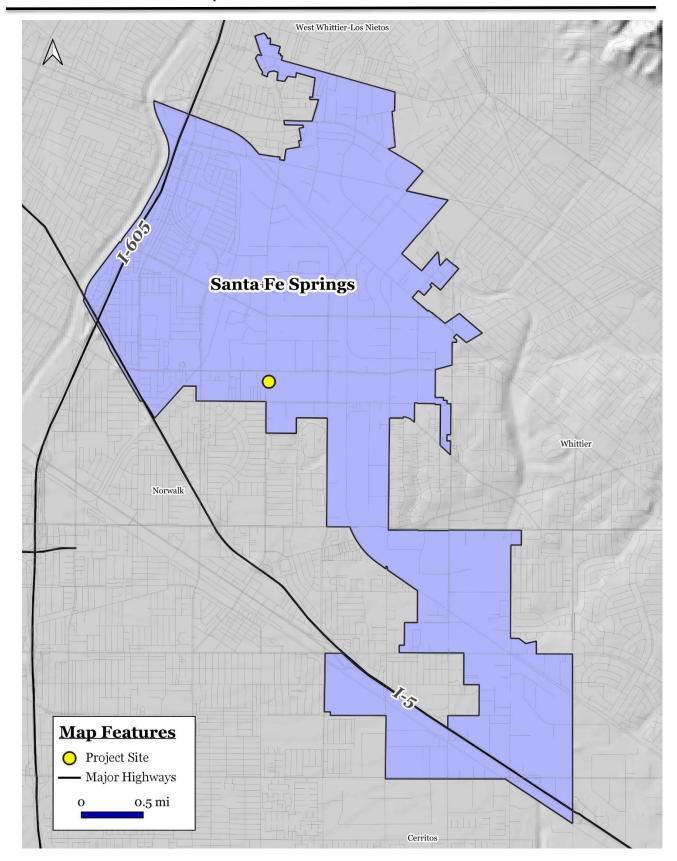



EXHIBIT 2-2 CITYWIDE MAP

SOURCE: QUANTUM GIS



EXHIBIT 2-3
LOCAL MAP
SOURCE: QUANTUM GIS

### 2.3 Environmental Setting

The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The 5.03-acre (219,23 square feet) site is surrounded by industrial uses. Exhibits 2-4 and 2-5 show aerial photographs of the project site and the adjacent development. Surrounding land uses in the vicinity of the project site are listed below:

- North of the Project Site. A mix of commercial and heavy manufacturing uses are located north of the project site. Two industrial commercial locations are located directly to the north of the former Oil Well Service Company building occupying the western portion of the project site, Valve and Steel Supply Hardware Store and Moon Equipment Company. A commercial plaza is located further north on the southeastern corner of Florence Avenue and Norwalk Boulevard. NHK Laboratories Inc., Fortune Resources, and Bestliving International is located north of the larger project parcel on the eastern portion of the overall project site.<sup>6</sup>
- South of the Project Site. Heavy Manufacturing land usage extends along the project site's southern side. R.B. Paint and Body Center is located to the south of the former Oil Well Service Company building occupying the western portion of the project site. Western Water Works Supply Company abuts the property's eastern larger portion of the project site. Further south, approximately 850 feet, Lakeland Road extends in an east-west orientation. Lakeland Villa mobile residential development is located to the southwest of the project site.
- East of the Project Site. Goodman Logistics Center Santa Fe Springs is located to the east side of
  the project site. Multiple tenants currently occupy the Logistics Center Buildings such as RIM
  Logistics Itd., Fn Logistics Inc., Funai Consumer Electronics Company, and Fashion Nova
  Distribution Center.8
- West of the Project Site. Quality Lift and Equipment Forklift Rental Service are directly to the west of the project site along Norwalk Boulevard. Silverio's Party Supply is located to the northwest of the project site.9

Photographs of the site and the surrounding area are provided min Exhibits 2-6 through 2-9. Notable uses in the vicinity of the project site include the following: Little Lake Cemetery Park, located 0.32 miles to the southwest; Heritage Park, located 0.45 miles to the northwest; Little Lake Elementary School, located 0.40 miles to the southwest; Little Lake Park, located 0.44 miles to the west; and the Civic Center including City Hall, the City Library, and the Santa Fe Springs Fire Department Station 4, located 1 mile to the northwest of the project site; The Villages at Heritage Springs is located 0.35 miles to the north of the project. Lastly, the Metropolitan State Hospital is located 0.46 miles to the southeast of the project site. <sup>10</sup>

<sup>&</sup>lt;sup>6</sup> Google Maps. Website Accessed July 18,2022.

<sup>7</sup> Ibid.

<sup>8</sup> Ibid.

<sup>9</sup> Ibid.



### EXHIBIT 2-4 AERIAL PHOTOGRAPH

SOURCE: GOOGLE EARTH

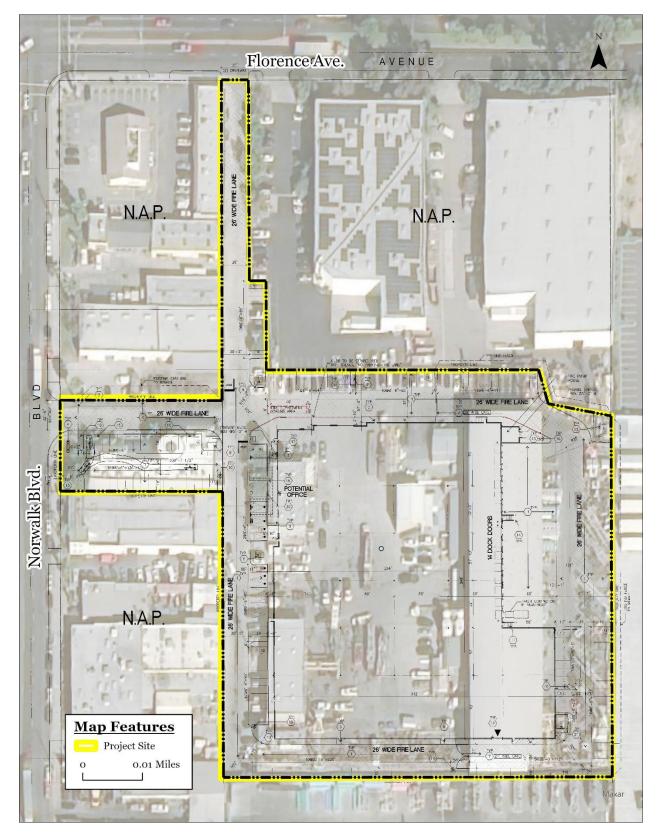


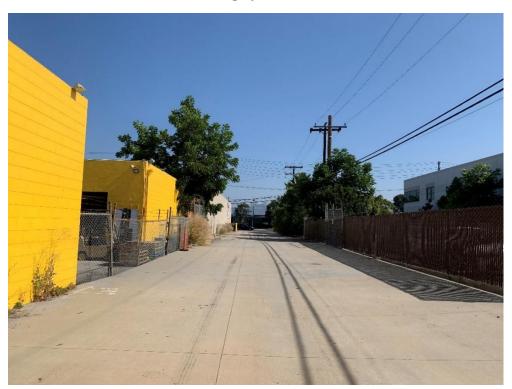

EXHIBIT 2-5
SITE PLAN AERIAL OVERLAY

Source: HPA Architecture



Project Site entrance to the east of Norwalk Boulevard




Oil Well Services Building on the western side of the project site to be demolished

### EXHIBIT 2-6 PROJECT SITE PHOTOGRAPHS

SOURCE BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING



Current entrance to the eastern side of project site.



Project Site entrance from the south of Florence Avenue, north central of project site.

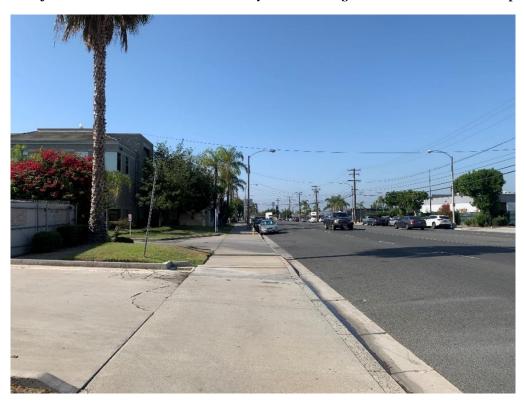
### EXHIBIT 2-7 PROJECT SITE PHOTOGRAPHS

SOURCE: BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING



Driveway of Project Site facing south of the project site




West of the Project Site: Quality Lift and Equipment Forklift Rental Service

### EXHIBIT 2-8 PROJECT SITE PHOTOGRAPHS

SOURCE: BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING



North of Project Site: A mix of commercial and heavy manufacturing uses are located north of the project site.



South of Project Site: A mix of commercial and heavy manufacturing uses are located south of the project site.

### EXHIBIT 2-9 PROJECT SITE PHOTOGRAPHS

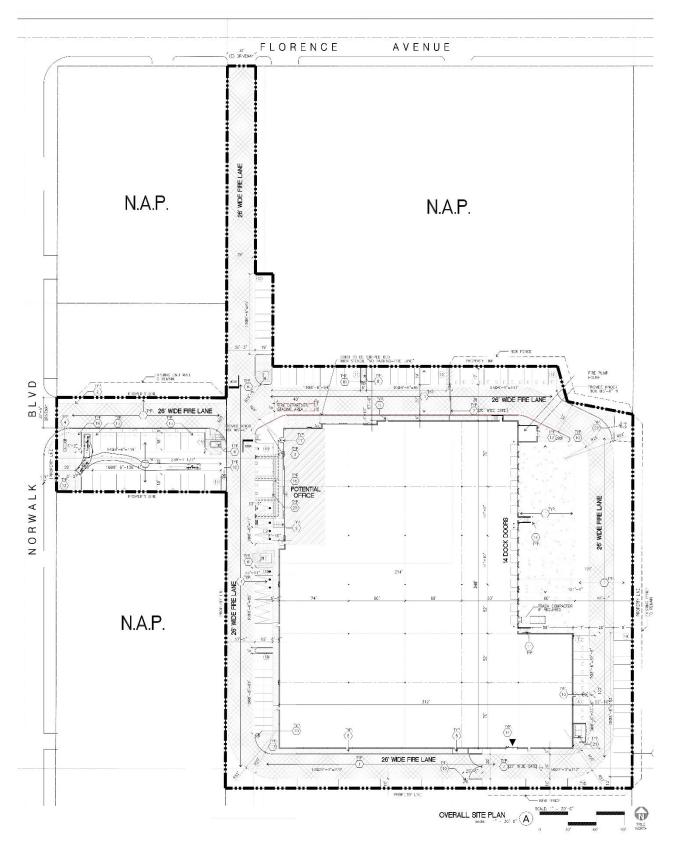
SOURCE: BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING

### 2.4 PROJECT DESCRIPTION

#### 2.4.1 PHYSICAL CHARACTERISTICS OF THE PROPOSED PROJECT

The proposed project would consist of the following elements:

- Project Site. The site area consists of 219,234 square feet (5.03 acres). The Assessor's Parcel Numbers attached to this site are 8009-022-046 and 8009-022-039. A galvanized 8-foot tubular fence will provide and prevent access to the interior of project site. The building area would dedicate 99,929 square feet of the project site to the proposed building. Following development, the project would have a lot coverage of 45.6%. The site is zoned as Heavy Manufacturing (M-2) with the exception of a portion of the site that has frontage along Norwalk Boulevard which is zoned as Commercial.11
- New Building. Referred to as Building 4, the project site would be occupied by a new building that would be used for refrigerated space (approximately 75% of the floor area) and the remainder would be used for storage. The building area would dedicate 3,000 square feet to office space, 5,200 square feet to an upper-level mezzanine space, 360 square feet for pump use, and 91,369 square feet to warehouse space for a total of 99,929 square feet of building area.<sup>12</sup> The project will incorporate solar panels on the roof of the building as a means to further reduce energy consumption.
- Landscaping. The site's landscaping would total 8,215 square feet. Landscaping would be provided along the proposed building's western side, along with landscaping to the north and west of the building along the parking areas. The vegetation requires very low to moderate water use. The landscaping will consist of 11 Muskogee Crepe Myrtle trees that will go along the building's western side; 4 Brisbane Box trees located to the north and northwest of the building, along the parking spaces; and 3 Southern Magnolia trees near the project site's western boundary and entrance. The shrubs consist of Dwarf Bottle Brush, New Gold Lantana, Little Ollie, Mundi Coast Rosemary, and Yeddo Hawthorn. Finally, Cassa Blue Flax Lily and Bull Grass will make up the ornamental grass and Prostrate Rosemary will make up the flowering groundcover. 13
- Access and Parking. Access to the project site's new building would be provided by a 30-foot driveway connection to Florence Avenue, on the northern portion of the project site, and a 36-foot driveway along Norwalk Boulevard on the western side of the project site leading into a 26-footwide driveway surrounding the proposed building. Parking will be distributed throughout the project site and would consist of 95 standard stalls, 4 accessible parking stalls, one van accessible stall, 15 parallel parking stalls, 23 compact stalls, 5 future electric vehicle (EV) parking, one future EV accessible parking stall, one future EV van parking stall, and 4 clean air vehicles for a total of 149 stalls. A total of 14 dock doors for loading and unloading will also be provided along the eastern side of the proposed building.14


The conceptual site plan is shown in Exhibit 2-10. Conceptual elevations are provided in Exhibits 2-11.

<sup>11</sup> HPA Architecture. GLC - Santa Fe Springs Building #4. Overall Site Plan. Sheet 1-DAB-A1.1. June 24, 2022.

<sup>12</sup> Ibid.

<sup>13</sup> Ibid.

<sup>14</sup> Ibid.



## EXHIBIT 2-10 SITE PLAN SOURCE: HPA ARCHITECTURE



### EXHIBIT 2-11 BUILDING ELEVATIONS

SOURCE: HPA ARCHITECTURE

### 2.4.2 CONSTRUCTION CHARACTERISTICS OF THE PROPOSED PROJECT

The proposed project will take approximately eleven months to complete. The proposed project's construction will consist of the following phases:

- *Demolition*. Demolition of the current onsite improvements will occur during this phase. This phase will take approximately two months to complete.
- *Grading and Site Preparation.* The project site will be prepared for the construction of the proposed Goodman Santa Fe Springs SPE LLC. building. The site will undergo final grading during this phase as well which will take approximately one month to complete.
- *Construction*. The new building will be constructed during this phase. This phase will take approximately six months to complete.
- Paving and Finishing. This concluding phase will involve the finishing of the new Goodman Santa
  Fe Springs SPE LLC building, the paving of the parking areas and hardscape, and the completion
  of other on-site improvements. This phase will take approximately two months to complete.

### 2.5 DISCRETIONARY ACTIONS

A *Discretionary Action* is an action taken by a government agency (for this project, the government agency is the City of Santa Fe Springs) that calls for an exercise of judgment in deciding whether to approve a project. Discretionary approvals required as part of the proposed project's implementation include the following:

- The Development Plan Approval Case No. 99 (DPA 999);
- The Approval of this Mitigated Negative Declaration (MND); and,
- The adoption of the Mitigation Monitoring and Reporting Program (MMRP).

Other ministerial permits and approvals may be deemed necessary, including but not limited to demolition permits, temporary street closure permits, grading permits, excavation permits, foundation permits, building permits, utility connections.

| INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJE<br>10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS | ст |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                            |    |
|                                                                                                                                            |    |

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

# **SECTION 3 - ENVIRONMENTAL ANALYSIS**

This section of the IS analyzes the potential environmental impacts that may result from the proposed project's implementation. The issue areas evaluated in this IS include the following:

Aesthetics (Section 3.1);
Agricultural & Forestry (Section 3.2);
Air Quality (Section 3.3);
Biological Resources (Section 3.4);
Cultural Resources (Section 3.5);
Energy (Section 3.6);
Geology & Soils (Section 3.7);
Greenhouse Gas Emissions; (Section 3.8);
Hazards & Hazardous Materials (Section 3.9);
Hydrology & Water Quality (Section 3.10);
Land Use & Planning (Section 3.11);

Mineral Resources (Section 3.12);
Noise (Section 3.13);
Population & Housing (Section 3.14);
Public Services (Section 3.15);
Recreation (Section 3.16);
Transportation (Section 3.17);
Tribal Cultural Resources (Section 3.18);
Utilities (Section 3.19);
Wildfire (Section 3.20); and,
Mandatory Findings of Significance (Section 3.21).

The environmental analysis included in this section reflects the IS Checklist format used by the City of Santa Fe Springs in its environmental review process (refer to Section 1.3 herein). Under each issue area, an analysis of impacts is provided in the form of questions and answers. The analysis then provides a response to the individual questions. For the evaluation of potential impacts, questions are stated and an answer is provided according to the analysis undertaken as part of this IS preparation. To each question, there are four possible responses:

- No Impact. The proposed project will not have any measurable environmental impact on the environment.
- Less Than Significant Impact. The proposed project may have the potential for affecting the environment, although these impacts will be below levels or thresholds that the City of Santa Fe Springs or other responsible agencies consider to be significant.
- Less Than Significant Impact with Mitigation. The proposed project may have the potential to generate impacts that will have a significant impact on the environment. However, the level of impact may be reduced to levels that are less than significant with the implementation of mitigation measures.
- *Potentially Significant Impact*. The proposed project may result in environmental impacts that are significant.

This IS will assist the city in making a determination as to whether there is a potential for significant adverse impacts on the environment associated with the implementation of the proposed project.

# 3.1 AESTHETICS

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Except as provided in Public Resources Code Section 21099, would the project have a substantial adverse effect on a scenic vista?                                                                                                                                                                                                                                                                                      |                                      |                                                          | ×                                  |              |
| <b>B.</b> Except as provided in Public Resources Code Section 21099, would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?                                                                                                                                                                                     |                                      |                                                          |                                    | ×            |
| C. Except as provided in Public Resources Code Section 21099, would the project substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality? |                                      |                                                          | ×                                  |              |
| <b>D.</b> Except as provided in Public Resources Code Section 21099, would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?                                                                                                                                                                                                                        |                                      | ×                                                        |                                    |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Except as provided in Public Resources Code Section 21099, would the project have a substantial adverse effect on a scenic vista? ● Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

The City of Santa Fe Springs General Plan does not identify any protected view sheds in the City nor is the project site located within any of the City designated scenic corridors. Major physiographic features within the surrounding area include the San Gabriel River, 1.66 mile west of the project site; the San Gabriel Mountains, located 16.60 miles to the north; and the Puente Hills, 4.54 miles to the northeast. Lakeland

<sup>15</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>&</sup>lt;sup>16</sup> Google Earth. Website accessed July 15,2022.

Villa residential development is the closest use that would be sensitive to a loss in scenic views. This residential development is located approximately 300 feet southwest of the project site along the north side of Lakeland Road. The distance of these units from the project site and the height of the new building, no views would be completely obstructed. As a result, the proposed project will have a less than significant impact on a scenic vista.<sup>17</sup>

**B.** Except as provided in Public Resources Code Section 21099, would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway? • No Impact.

The surrounding developed properties are currently occupied by industrial commercial development. There are no rock outcroppings nor historic buildings located on-site. According to the California Department of Transportation, there are no designated scenic highways and there are no State or County designated scenic highways in the vicinity of the project site. <sup>18</sup> Lastly, the project site does not contain any buildings listed in the State or National registrar (refer to Section 3.5). *As a result, no impacts will occur*.

C. Except as provided in Public Resources Code Section 21099, would the project substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality? • Less than Significant Impact.

The project site is currently being used as storage and utilization of Oil Well Service Company's construction materials, utility poles, and electrical equipment. The implementation of the proposed project will not result in any degradation of the site and surrounding areas. Once complete, the proposed building will feature grey, white, and brown walls with grey colored accents, with blue reflective windows on the north and west sides of the building. Two green "Goodman" logo signs will also be displayed on the north and western sides of the building. The project will also dedicate 8,215 square feet of land area to drought-tolerant landscaping. The project site is located within an urban area and is surrounded on all sides by development. The project will not conflict with applicable zoning and other regulations governing scenic quality as determined by City staff in its review of the proposed project's conformity with City building and zoning requirements. As a result, the impacts will be less than significant.

**D.** Except as provided in Public Resources Code Section 21099, would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area? ● Less than Significant Impact with Mitigation.

Exterior lighting can be a nuisance to adjacent land uses that are sensitive to this lighting. This nuisance lighting is referred to as *light trespass* which is typically defined as the presence of unwanted light on properties located adjacent to the source of lighting. Glare is related to light trespass and is defined as visual discomfort resulting from high contrast in brightness levels. Glare-related impacts can adversely affect day or nighttime views. As with lighting trespass, glare is of most concern if it would adversely affect sensitive land use or driver's vision. The exterior building façade would consist of mostly non-reflective materials, such as concrete tilt-up walls. In addition, the windows would be comprised of blue reflective glazing, which reduces glare over other transparent surfaces. As a result, no daytime glare-related impacts are anticipated. Nighttime glare and illumination have the potential to result in potentially significant impacts to sensitive

<sup>&</sup>lt;sup>17</sup> Blodgett Baylosis Environmental Planning. Site survey. Survey was conducted July 15, 2022

<sup>&</sup>lt;sup>18</sup> California Department of Transportation. *Official Designated Scenic Highways*. https://dot.ca.gov/programs/design/lap-landscape-architecture-and-community-livability/lap-liv-i-scenic-highways

receptors. Many sources of light contribute to the ambient nighttime lighting conditions. These sources of nighttime light include streetlights, security lighting, wall packs, and vehicular headlights. The proposed project will not introduce nighttime lighting that could potentially impact nearby sensitive receptors. The project site is located within an industrial area, though there are several developments that would be light sensitive to the project site. These uses are located approximately 300 feet to the southeast and include the Lakeland Villa mobile park, Lakeland Elementary School, Costa Azul Senior Apartments, and Villa Santa Fe Springs Apartments. The predominant source of light impacts will be related to the surface parking lot and building lighting associated with the building. Because light sensitive receptors are found in the vicinity of the project site, the following mitigation is required in order to minimize the potential impacts to the greatest extent possible:

The contractors must ensure that appropriate light shielding is provided for the lighting equipment in the parking area, buildings, and security to limit glare and light trespass. An interior parking and street lighting plan and an exterior photometric plan indicating the location, size, and type of existing and proposed lighting shall also be prepared by the Applicant and submitted to the Planning Department for review and approval. The proposed use must comply with Section 155.432 of the Santa Fe Springs Municipal Code.

The mitigation identified above would reduce the potential impacts to levels that are less than significant.

#### **CUMULATIVE IMPACTS**

The potential aesthetic impacts related to views, aesthetics, and light and glare are site-specific. The proposed project will not restrict scenic views along the local streets, damage or interfere with any scenic resources or highways, degrade the visual character of the project site and surrounding areas, or result in light and glare impacts, or conflict with zoning or other development standards pertaining to scenic quality. As a result, no cumulative impacts will occur.

## **MITIGATION MEASURES**

Because light sensitive receptors are found in the vicinity of the project site, the following mitigation is required in order to minimize the potential impacts to the greatest extent possible:

The contractors must ensure that appropriate light shielding is provided for the lighting equipment in the parking area, buildings, and security to limit glare and light trespass. An interior parking and street lighting plan and an exterior photometric plan indicating the location, size, and type of existing and proposed lighting shall also be prepared by the Applicant and submitted to the Planning Department for review and approval. The proposed use must comply with Section 155.432 of the Santa Fe Springs Municipal Code.

# 3.2 AGRICULTURE AND FORESTRY RESOURCES

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                           | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use?                                       |                                      |                                                          |                                    | ×            |
| <b>B.</b> Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                                |                                      |                                                          |                                    | ×            |
| C. Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))? |                                      |                                                          |                                    | ×            |
| <b>D.</b> Would the project result in the loss of forest land or conversion of forest land to non-forest use?                                                                                                                                                                                                |                                      |                                                          |                                    | ×            |
| <b>E.</b> Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?                                                                        |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

A. Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use? • No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

<sup>19</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

According to the California Department of Conservation, the City of Santa Fe Springs does not contain any areas of Prime Farmland, Unique Farmland, or Farmland of Statewide Importance.<sup>20</sup> The entire city is urban and there are no areas within the city that are classified as "Prime Farmland". The project site is presently being used for oil extraction and no agricultural uses are located on-site. Since the implementation of the proposed project will not involve the conversion of prime farmland, unique farmland, or farmland of statewide importance to urban uses. *As a result, no impacts will occur*.

**B.** Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract? • No Impact.

No loss in land zoned for/or permitting agricultural activities or farmland production will occur as part of the proposed project's implementation. Furthermore, the property is being used for oil extraction and there are no agricultural uses located within the site that would be affected by the project's implementation. In addition, according to the California Department of Conservation Division of Land Resource Protection, the project site is not subject to a Williamson Act Contract.<sup>21</sup> As a result, no impacts will result.

**C.** Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))? ● No Impact.

The City of Santa Fe Springs and the project site are located in the midst of a larger urban area and no forest lands are located within the City. The City of Santa Fe Springs General Plan and the Santa Fe Springs Zoning Ordinance do not provide for any forest land preservation.<sup>22</sup> As a result, no impacts will result.

**D.** Would the project result in the loss of forest land or conversion of forest land to non-forest use? ● No Impact

No forest lands are located within or in the vicinity of the project site. As a result, no loss or conversion of forest lands to urban uses will result from the proposed project's implementation. As a result, no impacts will occur.

**E.** Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use? ● No Impact.

The project would not involve the disruption or damage of the existing environment that would result in a loss of farmland to nonagricultural use or conversion of forest land to non-forest use because the project site is not located near farmland or forest land. *As a result, no impacts will result.* 

<sup>&</sup>lt;sup>20</sup> California Department of Conservation, Division of Land Resource Protection, Farmland Mapping, and Monitoring Program. Important Farmland in California 2010.

<sup>&</sup>lt;sup>21</sup> California Department of Conservation. State of California Williamson Act Contract Land. ftp://ftp.consrv.ca.gov/pub/dlrp/WA/2012%20Statewide%20Map/WA 2012 8x11.pdf

<sup>&</sup>lt;sup>22</sup> City of Santa Fe Springs Municipal Code. *Title XV, Land Usage*. Chapter 155, Code 155.211 Principal Permitted Uses.

## **CUMULATIVE IMPACTS**

The potential impacts related to agriculture and forestry are site-specific. According to the City, there are four cumulative projects located within one mile from the project site. These four cumulative projects are as follows: 128 units located at 13300 Lakeland Road; a 134,552 square-foot self-storage facility located at 11212 Norwalk Boulevard; a 22,994 square-foot warehouse located at 10370 Slusher Drive; and an 86-room hotel located at the southwest corner of Norwalk Boulevard and Telegraph Road. The analysis determined that there are no agricultural or forestry resources in the project area and that the implementation of the proposed project would not result in any impacts on these resources. As a result, no cumulative impacts on agriculture or forestry resources will occur.

#### **MITIGATION MEASURES**

The analysis of agricultural and forestry resources indicated that no impacts on these resources would occur as part of the proposed project's implementation and no mitigation is required.

# 3.3 AIR QUALITY

| Environmental Issue Areas Examined                                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project conflict with or obstruct implementation of the applicable air quality plan?                                                                                                                   |                                      |                                                          |                                    | ×            |
| <b>B.</b> Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard? |                                      |                                                          | ×                                  |              |
| <b>C.</b> Would the project expose sensitive receptors to substantial pollutant concentrations?                                                                                                                            |                                      |                                                          | ×                                  |              |
| <b>D.</b> Would the project result in other emissions (such as those leading to odors adversely affecting a substantial number of people?                                                                                  |                                      |                                                          | ×                                  |              |

The South Coast Air Quality Management District (SCAQMD) has established quantitative thresholds for short-term (construction) emissions and long-term (operational) emissions for the following criteria pollutants:

- $Ozone(O_3)$ : a nearly colorless gas that irritates the lungs, damages materials, and vegetation. Ozone is formed by photochemical reaction (when nitrogen dioxide is broken down by sunlight).
- *Carbon monoxide (CO):* a colorless, odorless toxic gas that interferes with the transfer of oxygen to the brain. Carbon monoxide is produced by the incomplete combustion of carbon-containing fuels emitted as vehicle exhaust.
- Nitrogen dioxide (NO<sub>2</sub>): a yellowish-brown gas, which at high levels can cause breathing difficulties. Nitrogen dioxide is formed when nitric oxide (a pollutant from burning processes) combines with oxygen.
- Sulfur dioxide (SO<sub>2</sub>): a colorless, pungent gas formed primarily by the combustion of sulfurcontaining fossil fuels. Health effects include acute respiratory symptoms and difficulty in breathing for children.
- *PM*<sub>10</sub> and *PM*<sub>2.5</sub>: refers to particulate matter less than ten microns and two and one-half microns in diameter, respectively. Particulates of this size cause a greater health risk than larger-sized particles because fine particles can more easily cause irritation.

Projects in the South Coast Air Basin (SCAB) generating construction-related emissions that exceed any of the following emissions thresholds are considered to be significant under CEQA:

- 75 pounds per day of reactive organic compounds;
- 100 pounds per day of nitrogen dioxide;
- 550 pounds per day of carbon monoxide;

- 150 pounds per day of PM<sub>10</sub>;
- 55 pounds per day of PM<sub>2.5</sub>; or,
- 150 pounds per day of sulfur oxides.

A project would have a significant effect on air quality if any of the following operational emissions thresholds for criteria pollutants are exceeded:

- 55 pounds per day reactive organic compounds;
- 55 pounds per day of nitrogen dioxide;
- 550 pounds per day of carbon monoxide;
- 150 pounds per day of PM<sub>10</sub>;
- 55 pounds per day of PM<sub>2.5</sub>; or,
- 150 pounds per day of sulfur oxides.

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project conflict with, or obstruct implementation of, the applicable air quality plan? ● No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>23</sup>

The project area is located within the South Coast Air Basin, which covers a 6,600 square-mile area within all of Orange County, the non-desert portions of Los Angeles, Riverside, and San Bernardino counties. Measures to improve regional air quality are outlined in the SCAQMD's Air Quality Management Plan (AQMP). The most recent AQMP was adopted in 2016 and was jointly prepared with the California Air Resources Board (CARB) and the Southern California Association of Governments (SCAG). <sup>24</sup> The AQMP will help the SCAQMD maintain focus on the air quality impacts of major projects associated with goods movement, land use, energy efficiency, and other key areas of growth. Key elements of the 2016 AQMP include enhancements to existing programs to meet the 24-hour PM<sub>2.5</sub> Federal health standard and a proposed plan of action to reduce ground-level Ozone. The primary criteria pollutants that remain non-attainment in the local area include PM<sub>2.5</sub> and Ozone. Specific criteria for determining a project's conformity

<sup>&</sup>lt;sup>23</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>&</sup>lt;sup>24</sup> South Coast Air Quality Management District. Final 2016 Air Quality Management Plan. Adopted March 2017.

with the AQMP is defined in Section 12.3 of the SCAQMD's CEQA Air Quality Handbook.<sup>25</sup> The Air Quality Handbook refers to the following criteria to determine a project's conformity with the AOMP:<sup>26</sup>

- Consistency Criteria 1 refers to a proposed project's potential for resulting in an increase in the frequency or severity of an existing air quality violation or its potential for contributing to the continuation of an existing air quality violation.
- Consistency Criteria 2 refers to a proposed project's potential for exceeding the assumptions included in the AQMP or other regional growth projections relevant to the AQMP's implementation.

In terms of Criteria 1, the proposed project's long-term (operational) airborne emissions will be below levels that the SCAQMD considers to be a significant adverse impact (refer to the analysis included in the next section where the long-term stationary and mobile emissions for the proposed project are summarized in Tables 3-1 and 3-2). The proposed project will also conform to Consistency Criteria 2 since it will not significantly affect any regional population, housing, and employment projections prepared for the City of Santa Fe Springs. Projects that are consistent with the projections of employment and population forecasts identified in the Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) prepared by SCAG are considered consistent with the AQMP growth projections, since the RTP/SCS forms the basis of the land use and transportation control portions of the AQMP. According to the most recent adopted Growth Forecast Appendix prepared by SCAG for the 2016-2045 RTP/SCS, the City of Santa Fe Springs is projected to add a total of 1,400 new jobs through the year 2045.<sup>27</sup> According to the State of California Employment Development Department, the City's current unemployment rate is 3.7 percent, which means there are up to 300 residents actively seeking work.<sup>28</sup> The proposed project, once operational, will add up to 66 employees assuming one employee for every 1,518 square feet<sup>29</sup> The number of new jobs is well within SCAG's employment projections for the City of Santa Fe Springs and the proposed project will not violate Consistency Criteria 2. As a result, no impacts related to the implementation of the AQMP are anticipated.

**B.** Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard? • Less Than Significant Impact.

The proposed project will take approximately eleven months to complete. The proposed project's construction will consist of the following phases:

- Demolition. Demolition of the current onsite improvements will occur during this phase. This phase will take approximately two months to complete.
- Grading and Site Preparation. The project site will be prepared for the construction of the proposed Goodman Santa Fe Springs SPE LLC. building. The site will undergo final grading during this phase as well which will take approximately one month to complete.

<sup>&</sup>lt;sup>25</sup> South Coast Air Quality Management District. Air Quality Analysis Handbook. 1993.

<sup>&</sup>lt;sup>27</sup> Southern California Association of Governments. *Demographics & Growth Forecast. Regional Transportation Plan 2020-204*5. September 3, 2020.

<sup>&</sup>lt;sup>28</sup> State of California Employment Development Department. *Labor Force and Unemployment Rate for Cities and Census* Designated Places. Website accessed July 15,2022.

<sup>&</sup>lt;sup>29</sup> The Natelson Company, Inc. Summary Report Employment Density Study. October 31, 2001.

- *Construction*. The new building will be constructed during this phase. This phase will take approximately six months to complete.
- Paving and Finishing. This concluding phase will involve the finishing of the new Goodman Santa
  Fe Springs SPE LLC building, the paving of the parking areas and hardscape, and the completion of
  other on-site improvements. This phase will take approximately two months to complete.

The analysis of daily construction and operational emissions was prepared utilizing the California Emissions Estimator Model (CalEEMod V.2020.4.0). As shown in Table 3-1, daily construction emissions are not anticipated to exceed the SCAQMD significance thresholds.

Table 3-1
Estimated Daily Construction Emissions

| Construction Phase                  | ROG       | NOx   | CO    | SO <sub>2</sub> | DM               | DM                |
|-------------------------------------|-----------|-------|-------|-----------------|------------------|-------------------|
|                                     |           | -     |       | _               | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Demolition (on-site)                | 2.27      | 21.48 | 19.64 | 0.04            | 4.44             | 1.45              |
| Demolition (off-site)               | 0.05      | 0.20  | 0.57  |                 | 0.19             | 0.05              |
| <b>Total Demolition</b>             | 2.32      | 21.68 | 20.21 | 0.04            | 4.63             | 1.50              |
| Site Preparation (on-site)          | 2.66      | 27.52 | 18.24 | 0.04            | 19.71            | 11.14             |
| Site Preparation (off-site)         | 0.06      | 0.04  | 0.63  |                 | 0.20             | 0.05              |
| <b>Total Site Preparation</b>       | 2.72      | 27.56 | 18.87 | 0.04            | 19.91            | 11.19             |
| Grading (on-site)                   | 1.71      | 17.93 | 14.75 | 0.03            | 6.40             | 4.06              |
| Grading (off-site)                  | 0.05      | 0.03  | 0.52  |                 | 0.17             | 0.04              |
| <b>Total Grading</b>                | 1.76      | 17.96 | 15.27 | 0.03            | 6.57             | 4.10              |
| Building Construction (on-site)     | 1.57      | 14.38 | 16.24 | 0.03            | 0.70             | 0.66              |
| Building Construction (off-site)    | 0.24      | 1.09  | 2.67  | 0.01            | 0.91             | 0.25              |
| <b>Total Building Construction</b>  | 1.81      | 15.47 | 18.91 | 0.04            | 1.61             | 0.91              |
| Paving (on-site)                    | 0.96      | 8.27  | 12.22 | 0.02            | 0.40             | 0.37              |
| Paving (off-site)                   | 0.06      | 0.04  | 0.65  |                 | 0.22             | 0.06              |
| <b>Total Paving</b>                 | 1.02      | 8.31  | 12.87 | 0.02            | 0.62             | 0.43              |
| Architectural Coatings (on-site)    | 21.12     | 1,22  | 1.81  |                 | 0.06             | 0.06              |
| Architectural Coatings (off-site)   | 0.04      | 0.02  | 0.42  |                 | 0.14             | 0.04              |
| <b>Total Architectural Coatings</b> | 21.16     | 1.24  | 2.23  |                 | 0.20             | 0.10              |
| <b>Maximum Daily Emissions</b>      | 23.88     | 67.21 | 54.36 | 0.11            | 31.90            | 16.80             |
| Daily Thresholds                    | <b>75</b> | 100   | 550   | 150             | 150              | 55                |

Source: CalEEMod V. 2020.4.0.

Long-term emissions refer to those air quality impacts that will occur once the proposed project has been constructed and is operational. The operational long-term air quality impacts associated with the proposed project include mobile emissions associated with vehicular traffic. The analysis of long-term operational impacts also used the CalEEMod V.2020.4.0 computer model. Table 3-2 depicts the operational emissions generated by the proposed project.

Table 3-2 Estimated Operational Emissions in lbs./day

| <b>Emission Source</b> | ROG  | NO <sub>2</sub> | CO   | SO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
|------------------------|------|-----------------|------|-----------------|------------------|-------------------|
| Area-wide (lbs./day)   | 2.26 | -               | 0.02 | 0.00            | -                |                   |
| Energy (lbs./day)      |      | 0.02            | 0.02 |                 |                  |                   |
| Mobile (lbs./day)      | 0.58 | 0.65            | 6.37 | 0.01            | 1.58             | 0.43              |
| Total (lbs./day)       | 2.84 | 0.68            | 6.37 | 0.01            | 1.58             | 0.43              |
| Daily Thresholds       | 55   | 55              | 550  | 150             | 150              | 55                |

Source: CalEEMod V. 2020.4.0.

As indicated in Table 3-2, the projected long-term emissions are below thresholds considered to represent a significant adverse impact. Since the project area is located in a non-attainment area for Ozone and particulate matter, the Applicant will be required to ensure that the grading and building contractors adhere to all pertinent provisions of SCAQMD Rule 403 pertaining to the generation of fugitive dust during grading and/or the use of equipment on unpaved surfaces.<sup>30</sup> The contractors will be responsible for being familiar with and implementing any pertinent best available control measures. Therefore, less than significant impacts will occur.

**C.** Would the project expose sensitive receptors to substantial pollutant concentrations? • Less Than Significant Impact.

The potential long-term (operational) and short-term (construction) emissions associated with the proposed project are compared to the SCAQMD's daily emissions thresholds in Tables 3-1 and 3-2, respectively. As indicated in these tables, the short-term and long-term emissions will not exceed the SCAQMD's daily thresholds. Sensitive receptors refer to land uses and/or activities that are especially sensitive to poor air quality and typically include homes, schools, playgrounds, hospitals, convalescent homes, and other facilities where children or the elderly may congregate.<sup>31</sup> Lakeland Villa residential development is the closest sensitive receptor. This residential development is located approximately 300 feet southwest of the project site along the northern side of Lakeland Road.<sup>32</sup> The locations of the aforementioned sensitive receptors are shown in Exhibit 3-1.

The SCAQMD requires that CEQA air quality analyses indicate whether a proposed project will result in an exceedance of *localized emissions thresholds* or LSTs. LSTs only apply to short-term (construction) and long-term (operational) emissions at a fixed location and do not include off-site or area-wide emissions. The approach used in the analysis of the proposed project utilized a number of screening tables that identified maximum allowable emissions (in pounds per day) at a specified distance to a receptor. The pollutants that are the focus of the LST analysis include the conversion of  $NO_x$  to  $NO_2$ ; carbon monoxide (CO) emissions from construction and operations;  $PM_{10}$  emissions from construction and  $PM_{2.5}$  emissions from construction. The use of the "look-up tables" is permitted since each of the construction phases will involve the disturbance of less than five acres of land area. For purposes of the LST analysis, the receptor distance used was 100 meters.

<sup>30</sup> South Coast Air Quality Management District. Rule 403, Fugitive Dust. As Amended June 3, 2005.

<sup>&</sup>lt;sup>31</sup> South Coast Air Quality Management District. CEQA Air Quality Handbook, Appendix 9. As amended 2004.

<sup>32</sup> Blodgett Baylosis Environmental Planning. Site survey. Survey was conducted on July 15, 2022.

Table 3-3 Local Significance Thresholds Exceedance SRA 5 for 5 Acres of Disturbance (site is 5.03 acres)

| `                 |                                    |              |           |           |               |                        |                                |
|-------------------|------------------------------------|--------------|-----------|-----------|---------------|------------------------|--------------------------------|
| Emissions         | Maximum<br>Emissions<br>(lbs./day) | Туре         | Specified | l Distanc |               | hold (lbs./eceptor (ir | day) and a<br>n meters)<br>500 |
| (1880) and        | (2004)                             |              | 25        | 50        | 100           | 200                    | 500                            |
| NOx               | 0.68                               | Operation    | 172       | 165       | 176           | 194                    | 244                            |
| NO <sub>x</sub>   | 67.21                              | Construction | 172       | 165       | 176           | 194                    | 244                            |
| СО                | 6.37                               | Operation    | 1,480     | 1,855     | <b>2,43</b> 7 | 3,867                  | 9,312                          |
| СО                | 54.36                              | Construction | 1,480     | 1,855     | 2,437         | 3,867                  | 9,312                          |
| $PM_{10}$         | 1.58                               | Operation    | 4         | 10        | 15            | 23                     | 49                             |
| $PM_{10}$         | 31.90                              | Construction | 14        | 42        | 60            | 97                     | 203                            |
| PM <sub>2.5</sub> | 0.43                               | Operation    | 2         | 3         | 4             | 8                      | 25                             |
| PM <sub>2.5</sub> | 16.80                              | Construction | 7         | 10        | 15            | 30                     | 103                            |

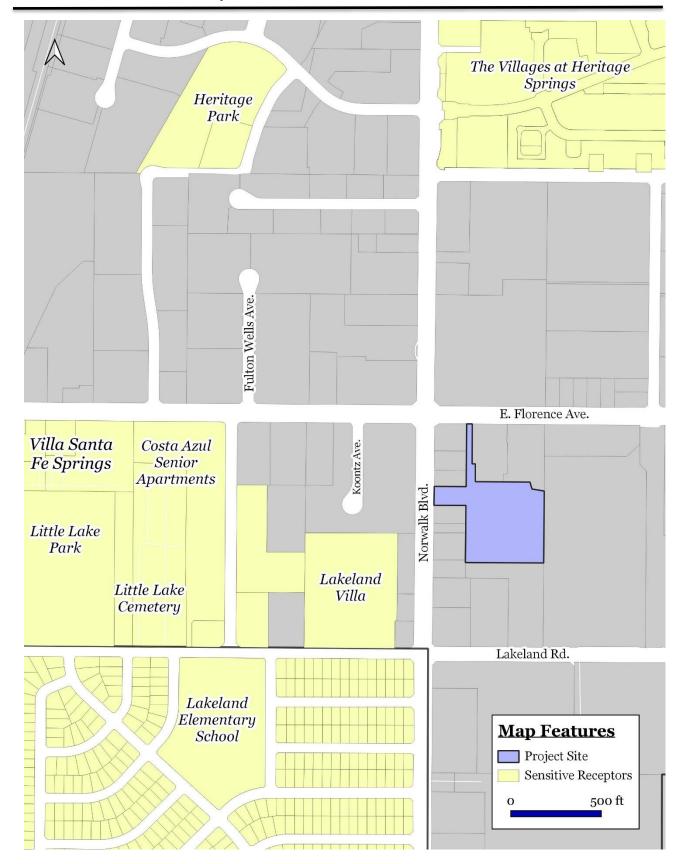
Source: CalEEMod Version 2020.4.0.

As indicated in Table 3-3, the project is anticipated to exceed construction LSTs for particulates. Further analysis of the CalEEMod worksheets indicated that the primary source of construction PM emissions is fugitive dust. Adherence to additional mandatory Rule 403 regulations would reduce fugitive dust emissions by approximately 50% to levels that are less than significant. Rule 403 requires that temporary dust covers be used on any piles of excavated or imported earth to reduce wind-blown dust. In addition, all clearing, earthmoving, or excavation activities must be discontinued during periods of high winds (i.e., greater than 15 mph), so as to prevent excessive amounts of fugitive dust.

Finally, the contractors must comply with other SCAQMD regulations governing equipment idling and emissions controls as well as mandatory SCAQMD regulations governing fugitive dust (Rule 403) and odors (Rule 1401). In addition, future truck drivers visiting the site during the project's construction must adhere to Title 13 - §2485 of the California Code of Regulations, which limits the idling of diesel-powered vehicles to less than five minutes. These regulations will reduce the particulate emissions by as much as 50%. *As a result, the impacts will be less than significant.* 

**D.** Would the project result in other emissions (such as those leading to odors adversely affecting a substantial number of people? ● Less Than Significant Impact.

The SCAQMD has identified those land uses that are typically associated with odor complaints. These uses include activities involving livestock, rendering facilities, food processing plants, chemical plants, composting activities, refineries, landfills, and businesses involved in fiberglass molding.<sup>33</sup> All truck drivers that may visit the site must adhere to Title 13 - §2485 of the California Code of Regulations, which limits the idling of diesel-powered vehicles to less than five minutes. Adherence to the aforementioned standard condition will minimize odor impacts from diesel trucks. Furthermore, adherence to SCAQMD Rule 402 Nuisance Odors will minimize odors generated during daily activities. *Adherence to the existing SCAQMD regulations governing "nuisance odors" will reduce potential impacts to levels that are less than significant.* 


<sup>33</sup> South Coast Air Quality Management District. CEQA Air Quality Handbook, Appendix 9. As amended 2017.

#### **CUMULATIVE IMPACTS**

There are four cumulative projects located within one mile from the project site. These four projects are as follows: 128 DU located at 13300 Lakeland Road; a 134,552 square-foot self-storage facility located at 11212 Norwalk Boulevard; a 22,994 square-foot warehouse located at 10370 Slusher Drive; and an 86-room hotel located at the southwest corner of Norwalk Boulevard and Telegraph Road. The combined operational emissions from the five projects (including the proposed project) will still be below the thresholds of significance established by the SCAQMD (the CalEEMod worksheets for the cumulative emissions are provided in the Appendix). Furthermore, the addition of the project trips as well as the trips from the aforementioned related projects will not result in the degradation of any intersection's level of service and no carbon "hot-spots" will be created as a result of the project's implementation and occupation.

#### **MITIGATION MEASURES**

The analysis of air quality impacts indicated that no impacts on these resources would occur as part of the proposed project's implementation. As a result, no mitigation is required.



# EXHIBIT 3-1 SENSITIVE RECEPTORS MAP

# 3.4 BIOLOGICAL RESOURCES

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service? |                                      |                                                          |                                    | ×            |
| <b>B.</b> Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or US Fish and Wildlife Service?                                                                 |                                      |                                                          |                                    | ×            |
| C. Would the project have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?                                                                                                |                                      |                                                          |                                    | ×            |
| <b>D.</b> Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?                                                                                   |                                      |                                                          |                                    | ×            |
| <b>E.</b> Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?                                                                                                                                                                                  |                                      |                                                          |                                    | ×            |
| F. Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?                                                                                                                                        |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service? ● No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be

dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>34</sup>

A review of the California Department of Fish and Wildlife California Natural Biodiversity Database (CNDDB) Bios Viewer for the Whittier Quadrangle indicates that there are seven threatened or endangered species located within the Whittier Quadrangle (the City of Santa Fe Springs is listed under the Whittier Quadrangle).<sup>35</sup> These species include:

- The *California Gnatcatcher* which is not likely to be found on-site due to the lack of habitat suitable for the California Gnatcatcher. The absence of coastal sage scrub, the California Gnatcatcher's primary habitat, further diminishes the likelihood of encountering such birds.
- The *Least Bell's Vireo* lives in a riparian habitat, with a majority of the species living in San Diego County. As a result, it is not likely that any Least Bell's Vireos will be encountered in the project area due to the lack of riparian habitat in the surrounding area.
- The Santa Ana Sucker will not be found on-site because the Santa Ana Sucker is a fish and there are no bodies of water present on-site.<sup>36</sup> The nearest body of water is the San Gabriel River. located approximately 1.70 miles to the west of the project site.
- The *Bank Swallow* lives in a riparian habitat. The nearest body of water is the San Gabriel River, located approximately 1.70 miles to the west of the project site. This river is channelized and extends through an urban area. Additionally, the current level of development around the project site is not an ideal environment for the Bank Swallow.
- The Western Yellow-Billed Cuckoo is an insect-eating bird found in riparian woodland habitats. The likelihood of encountering a Western Yellow-Billed Cuckoo is slim due to the level of development present within the City of Santa Fe Springs. Furthermore, the lack of riparian habitat further diminishes the likelihood of encountering populations of Western Yellow-Billed Cuckoos.
- California Orcutt Grass is found near vernal pools throughout Los Angeles, Riverside, and San Diego Counties.<sup>37</sup> As indicated previously, the project site is located in the midst of an urban area. There are no bodies of water located on-site that would be capable of supporting populations of California Orcutt Grass nor does the site have the capacity to form vernal pools during wet seasons.

The proposed project will have no impact on the aforementioned species because the project site is located in the midst of an urban area. As a result, no impacts will occur from proposed project's implementation.

**B.** Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or US Fish and Wildlife Service? ● No Impact.

The project site is developed and otherwise disturbed and graded and does not include any streams, wetland habitat, or riparian vegetation. The U.S. Fish and Wildlife Service National Wetlands Inventory, Wetlands

<sup>34</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4.1-DAB-A2.1. July 24, 2022.

<sup>35</sup> California Department of Fish and Wildlife. Bios Viewer. https://wildlife.ca.gov/Data/BIOS

<sup>36</sup> Blodgett Baylosis Environmental Planning. Site Survey. Survey was completed on July 15,2022

<sup>&</sup>lt;sup>37</sup> County of Los Angeles Department of Public Works. *Listed Species in the County of Los Angeles*. http://dpw.lacounty.gov/pdd/bikepath/bikeplan/docs/App\_C\_Bio.pdf.

Mapper classifies the San Gabriel River as R4SBCx, being an artificial riverine with water flowing only part of the year, completely dewatered at low tide, has water absent at the end of the growing season in most years and was excavated and channelized by humans.<sup>38</sup> In addition, there are no sensitive natural communities identified near or on the project site.<sup>39</sup> As a result, no impacts will occur from proposed project's implementation.

**C.** Would the project have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means? ● No Impact.

No wetland areas or riparian habitats (e.g., wetlands, vernal pools, critical habitats for sensitive species, etc.) were observed on the site during the field investigations. The site in its entirety is disturbed. Additionally, no offsite wetland habitats would be affected by the proposed development since the project's construction would be limited to the proposed project site. *As a result, no impacts will occur from proposed project's implementation.* 

**D.** Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites? • No Impact.

The project site has no utility as a wildlife migration corridor due to the proposed site location in the midst of an urban area. According to the Los Angeles County Department of Regional Planning, a wildlife corridor may be defined as:

"Areas of open space of sufficient width to permit larger, more mobile species (such as foxes, bobcats and coyote) to pass between larger areas of open space, or to disperse from one major open space region to another are referred to as "wildlife corridors." Such areas generally are several hundred feet wide, unobstructed, and usually possess cover, food, and water."40

Wildlife migration through the proposed project site is inhibited by security fencing, surrounding development, utility lines, and major roadways. Future development of the site will require the removal of limited disturbed ground cover consisting of common grasses and other ruderal overgrowth within the project boundary. Given the disturbed character of the project site, no impacts will occur.

**E.** Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? ● No Impact

Title 9: General Regulations; Chapter 96, Streets & Sidewalks, Street Trees; Section 96.133-serves as the city's tree preservation ordinance. According to the aforementioned code, a person is required to obtain a permit from the city's Public Works Director prior to the removal and/or alteration of trees located within the public right-of-way (also known as roadside trees). The project will also include drought-tolerant

 $<sup>{}^{38}\,</sup>United\,States\,Fish\,and\,Wildlife\,Service.\,\textit{National\,Wetlands\,Inventory}.\,\underline{\text{https://www.fws.gov/Wetlands/data/Mapper.html}}$ 

<sup>39</sup> California Department of Fish and Wildlife. Natural Communities List.

https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=153609&inline

<sup>&</sup>lt;sup>40</sup> Los Angeles County Department of Regional Planning. Significant Ecological Areas. http://planning.lacounty.gov/sea/local\_and\_site\_specific\_habitat\_linkages\_and\_wildlife\_corridors.

landscaping. The proposed project will not conflict with any local policies regarding tree preservation or tree removal. As a result, no impacts will occur from proposed project's implementation.

Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?
No Impact.

The proposed project will not impact an adopted or approved local, regional, or State habitat conservation plan because the proposed project is located in the midst of an urban area. In addition, the Puente Hills Significant Ecological Area (SEA #15) is the closest protected SEA and is located approximately 4.15 miles northeast from the project site.<sup>41</sup> The proposed project's implementation will not affect the Puente Hills SEA because the proposed development will be restricted to the project site. *As a result, no impacts will occur from proposed project's implementation.* 

## **CUMULATIVE IMPACTS**

The proposed project will not involve an incremental loss or degradation of protected habitat. The analysis determined that the proposed project will not result in any impacts on protected plant and animal species. As a result, no cumulative impacts on biological resources will be associated with the proposed project's implementation.

#### MITIGATION MEASURES

The analysis indicated that the proposed project would not result in any impacts on biological resources. As a result, no mitigation measures are required.

<sup>&</sup>lt;sup>41</sup> County of Los Angeles Department of Regional Planning. Significant Ecological Areas and Coastal Resource Areas Policy Map. February 2015.

# 3.5 CULTURAL RESOURCES

| Environmental Issue Areas Examined                                                                                                     | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project cause a substantial adverse change in the significance of a historical resource pursuant to §15064.5?      |                                      |                                                          |                                    | ×            |
| <b>B.</b> Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5? |                                      |                                                          | ×                                  |              |
| C. Would the project disturb any human remains, including those interred outside of formal cemeteries?                                 |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project cause a substantial adverse change in the significance of a historical resource pursuant to \$15064.5? • No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>42</sup>

Historic structures and sites are defined by local, State, and Federal criteria. A site or structure may be historically significant if it is locally protected through a local general plan or historic preservation ordinance. A site or structure may be historically significant according to State or Federal criteria even if the locality does not recognize such significance. The California State Historic Preservation Office (SHPO), maintains an inventory of those sites and structures that are considered to be historically significant. Finally, the U.S. Department of Interior has established specific Federal guidelines and criteria that indicate the manner in which a site, structure, or district is to be defined as having historic significance and in the determination of its eligibility for listing on the National Register of Historic Places.<sup>43</sup> To be considered eligible for the National Register, a property's significance may be determined if the property is associated with events, activities, or developments that were important in the past, with the lives of people who were important in

<sup>42</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>&</sup>lt;sup>43</sup> U.S. Department of the Interior, National Park Service. *National Register of Historic Places*. https://www.nps.gov/subjects/nationalregister/index.htm. 2010.

the past, or represents significant architectural, landscape, or engineering elements. State historic preservation regulations include the statutes and guidelines contained in the California Environmental Quality Act (CEQA) and the Public Resources Code (PRC). A historical resource includes, but is not limited to, any object, building, structure, site, area, place, record, or manuscript, which is historically or archaeologically significant. The State regulations that govern historic resources and structures include Public Resources Code (PRC) Section 5024.1 and CEQA Guidelines Sections 15064.5(a) and 15064.5(b). In addition, California law protects Native American burials, skeletal remains, and associated grave goods regardless of the antiquity and provides for the sensitive treatment and disposition of those remains. CEQA, as codified at PRC Sections 21000 et seq., is the principal statute governing the environmental review of projects in the State. The project site is not included on a list of historic resources compiled by the United States Department of the Interior, National Park Service.44 In addition, the existing buildings and/or project sites are not present on the list of historic resources identified by the State Office of Historic Preservation (SHPO).45 Furthermore, they are not eligible or do not meet the criteria for listing as a significant historic resource.46

Two locations in the City are recorded on the National Register of Historic Places and the list of California Historical Resources: the Clarke Estate and the Hawkins-Nimocks Estate (also known as the Patricio Ontiveros Adobe or Ontiveros Adobe). These sites structures are not located within or adjacent to the project site. The project site is not listed on the National or State Historic Register.<sup>47</sup> The proposed project will be limited to the project site and will not affect any existing resources listed on the National or State Register or those identified as being eligible for listing on the National or State Register. *As a result, no impacts will occur from proposed project's implementation.* 

**B.** Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to \$15064.5? • Less Than Significant Impact.

The greater Los Angeles Basin was previously inhabited by the Gabrieleño people, named after the San Gabriel Mission. The Tongva tribe has lived in this region for around 7,000 years.<sup>48</sup> Prior to Spanish contact, approximately 5,200 Gabrieleño people lived in villages throughout the Los Angeles Basin.<sup>49</sup> Villages were typically located near major rivers such as the San Gabriel, Rio Hondo, or Los Angeles Rivers. AB-52 requires a lead agency to begin consultation with a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project, if the tribe requested to the lead agency, in writing, to be informed by the lead agency of proposed projects in that geographic area and the tribe requests consultation. Two village sites were located in the Los Nietos area: *Naxaaw'na* and *Sehat*. The sites of *Naxaaw'na* and *Sehat* are thought to be near the adobe home of Jose Manuel Nietos that was located near the San Gabriel River.<sup>50</sup> The proposed project site is not near the two village sites, rather it is the former

Section 3 ● Environmental Analysis

<sup>&</sup>lt;sup>44</sup> National Park Service. *National Register of Historic Places*. <a href="https://www.nps.gov/subjects/nationalregister/index.htm">https://www.nps.gov/subjects/nationalregister/index.htm</a>. Website accessed July 15,2022.

<sup>&</sup>lt;sup>45</sup> California Department of Parks and Recreation. *California Historical Resources*. <a href="http://ohp.parks.ca.gov/ListedResources">http://ohp.parks.ca.gov/ListedResources</a>. Website accessed on July 15,2022.

<sup>&</sup>lt;sup>46</sup> To be considered eligible for the National Register, a property's significance may be determined if the property is associated with events, activities, or developments that were important in the past, with the lives of people who were important in the past, or represents significant architectural, landscape, or engineering elements. State historic preservation regulations include the statutes and guidelines contained in the California Environmental Quality Act (CEQA) and the Public Resources Code (PRC). A historical resource includes, but is not limited to, any object, building, structure, site, area, place, record, or manuscript, which is historically or archaeologically significant.

<sup>&</sup>lt;sup>47</sup> U. S. Department of the Interior, National Park Service. *National Register of Historic Places*. <a href="http://focus.nps.gov/nrhp">http://focus.nps.gov/nrhp</a>. Secondary Source: California State Parks, Office of Historic Preservation. *Listed California Historical Resources*. Website accessed December 4, 2017.

 $<sup>{\</sup>color{blue} ^{48}} \ Tonga \ People \ of Sunland-Tujunga. \ {\color{blue} \underline{Introduction.}} \ {\color{blue} \underline{http://www.lausd.k12.ca.us/Verdugo} \ {\color{blue} \underline{HS/classes/multimedia/intro.html.}} \\ {\color{blue} \underline{HS/classes/multimedia/intro.html.}} \ {\color{blue} \underline{HS/classes/multimedia/intro.html.}} \ {\color{blue} \underline{HS/classes/multimedia/intro.html.}} \\ {\color{blue} \underline{HS/classes/multimedia/intro.html.}} \ {\color{blue} \underline{HS/classes/multimedia/intro.html.}}$ 

<sup>&</sup>lt;sup>49</sup> Indigenous Mexico. *The Native Roots of Southern California*. <a href="https://indigenousmexico.org/southwest-us/california/the-native-roots-of-southern-californians/">https://indigenousmexico.org/southwest-us/california/the-native-roots-of-southern-californians/</a>.

<sup>50</sup> McCawley, William. The First Angelinos, the Gabrielino Indians of Los Angeles. 1996.

location of support facilities for an existing oilfield. The entire project site has been developed and redeveloped multiple times during that last 100 years. This development has also included repeated grading and ground disturbance. As a result, the impacts will be less than significant.

**C.** Would the project disturb any human remains, including those interred outside of formal cemeteries • Less than Significant Impact.

There is one cemetery located in the immediate area. The nearest cemetery to the project site is Little Lake Cemetery, located approximately 0.32 miles to the west of the project site.<sup>51</sup> The proposed project will not affect the aforementioned cemetery. In the unlikely event that human remains are uncovered by construction crews and/or the Native American Monitors, all excavation/grading activities shall be halted and the Santa Fe Springs Department of Police Services will be contacted (the Department will then contact the County Coroner). Title 14; Chapter 3; Article 5; Section 15064.5 of CEQA will apply in terms of the identification of significant archaeological resources and their salvage.

• In the event that human remains are discovered during grading or excavation, all excavation and grading activities shall be stopped and the Santa Fe Springs Department of Police Services will be contacted (the Department will then contact the County Coroner). Title 14; Chapter 3; Article 5; Section 15064.5 of CEQA and California Health and Safety Code Section 7050.5(b) will apply in terms of the identification of significant archaeological resources and their salvage.

Adherence to this regulatory compliance measure will ensure reduce potential impacts remain less than significant. As a result, the impact would be less than significant.

### **CUMULATIVE IMPACTS**

The potential environmental impacts related to cultural resources are site-specific. As a result, no cumulative impacts will occur as part of the proposed project's implementation.

## **MITIGATION MEASURES**

Given the site's disturbed character, the analysis determined that no mitigation would be required.

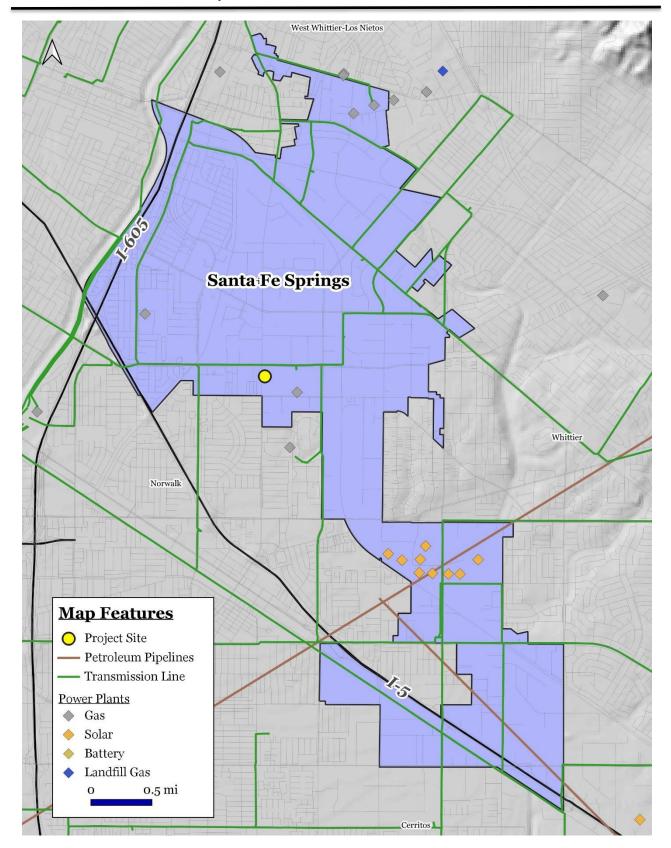
<sup>51</sup> Google Earth. Website accessed July 15, 2022.

# 3.6 ENERGY

| Environmental Issue Areas Examined                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation? |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?                                                                                     |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation? ● Less than Significant Impact.


The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>52</sup> Table 3-4 provides an estimate of electrical consumption for the proposed project. No Natural gas will be used during operations. As indicated in the table, the project is estimated to consume approximately 1,314.4 kilowatts (kWh) of electricity on a daily basis. Energy facilities in the area are shown in Exhibit 3-4.

> Table 3-4 Estimated Annual Energy Consumption

| Project                | <b>Consumption Rate</b> | <b>Total Project Consumption</b> |
|------------------------|-------------------------|----------------------------------|
| Electrical Consumption | 4.8 kWh/sq. ft./year    | 1,314.4 kWh/day                  |

Source: Blodgett Baylosis Environmental Planning.

<sup>52</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.



# EXHIBIT 3-2 ENERGY MAP

SOURCE: CA ENERGY COMMISSION

In order to prevent inefficient consumption of energy, all exterior security lighting must be motion sensor controlled. This project design feature will prevent the continuous use of lighting thus reducing energy consumption. The project will incorporate solar panels on the roof of the building as a means to further reduce energy consumption. Adherence to the above-mentioned project design feature will further reduce potential impacts. As a result, the impacts will be less than significant.

**B.** Would the project conflict with or obstruct a state or local plan for renewable energy or energy efficiency? • Less than Significant Impact.

On January 12, 2010, the State Building Standards Commission adopted updates to the California Green Building Standards Code (Code) which became effective on January 1, 2020. The new 2022 standards will go into effect on January 1, 2023. The California Code of Regulations (CCR) Title 24, Part 11: California Green Building Standards (Title 24) became effective to aid efforts to reduce GHG emissions associated with energy consumption. Title 24 now requires that new buildings reduce water consumption, employ building commissioning to increase building system efficiencies, divert construction waste from landfills, and install low pollutant-emitting finish materials. The 2016 version of the standards became effective as of January 1, 2017.

The California Green Building Standards Code does not prevent local jurisdiction from adopting a more stringent code as state law provides methods for local enhancements. Standard conditions that will be designed to reduce air emissions, GHG emissions, and energy consumption will include the design and incorporation of solar energy arrays on the roof; energy star heating, cooling, and lighting devices; light colored roofing materials; landscaping within the parking areas; use of reclaim water for irrigation; and providing an electrical vehicle charging station all in compliance with the California Green Building Code requirements. *As a result, the potential impacts are considered to be less than significant.* 

## **CUMULATIVE IMPACTS**

The analysis herein determined that the proposed project's impacts would be less than significant. As a result, the potential cumulative impacts would be less than significant.

#### **MITIGATION MEASURES**

The analysis of energy impacts indicated that no impacts on these resources would occur as part of the proposed project's implementation. As a result, no mitigation is required.

# 3.7 GEOLOGY AND SOILS

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| A. Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault (refer to Division of Mines and Geology Special Publication 42); strong seismic ground shaking; seismic-related ground failure, including liquefaction; and, landslides? |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project result in substantial soil erosion or the loss of topsoil?                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                          | ×                                  |              |
| <b>C.</b> Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?                                                                                                                                                                                                                                                                                  |                                      |                                                          | ×                                  |              |
| <b>D.</b> Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                          | ×                                  |              |
| E. Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?                                                                                                                                                                                                                                                                                                                                       |                                      |                                                          |                                    | ×            |
| F. Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault (refer to Division of Mines and Geology Special Publication 42); strong seismic ground shaking; seismic-related ground failure, including liquefaction; and, landslides? ● Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of

Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>53</sup>

The City of Santa Fe Springs is located in a seismically active region of Southern California. Many major and minor local faults traverse the entire Southern California region, posing a threat to millions of residents, including those who reside in the City of Santa Fe Springs. Earthquakes from several active and potentially active faults in the Southern California region could affect the proposed project site. In 1972, the Alquist-Priolo Earthquake Zoning Act was passed in response to the damage sustained in the 1971 San Fernando Earthquake.<sup>54</sup> The Alquist-Priolo Earthquake Fault Zoning Act's main purpose is to prevent the construction of buildings used for human occupancy on the surface trace of active faults.<sup>55</sup> A map displaying the cities and counties subject to the Alquist-Priolo Earthquake Fault Zones is available on the State's Department of Conservation website. No Alquist-Priolo Earthquake Fault Zones cross the City of Santa Fe Springs.<sup>56</sup> Even though the city is not on the list, there are a number of known faults within the city.

The nearest known fault is the Lower Elysian Park Thrust Fault located approximately 300 feet southwest of the project site. This fault is part of the larger Elysian Park Fault ranging 31 miles from Northern Cienega to Fullerton. Regarded as a blind thrust fault formed less than 1.6 million years ago during an Undifferentiated Quaternary Period, its last noteworthy earthquake occurred as the 6.0 magnitude Whittier Narrows earthquake of 1987. Annually, the fault's slip rate category is between 1.0 and 5.00 millimeters per year with a recurrence interval expected to be between 340 and 540 years. The potential impacts from fault movement and ground-shaking are considered no greater for the project site than for the surrounding areas. Surface ruptures are visible instances of horizontal or vertical displacement, or a combination of the two.

According to the United States Geological Survey, liquefaction is the process by which water-saturated sediment temporarily loses strength and acts as a fluid. As a result, the ground soil loses strength due to an increase in water pressure following seismic activity. The project site is not located in an area that is subject to liquefaction, but a large portion of the surrounding area and the City is (refer to Exhibit 3-3). Eastly, the project site is not subject to the risk of landslides (refer to Exhibit 3-3) because there are no hills or mountains within the vicinity of the project site. As a result, the potential impacts are less than significant.

<sup>&</sup>lt;sup>53</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>54</sup> California Department of Conservation. Alquist-Priolo Earthquake Fault Zones.

<sup>55</sup> Ibid.

<sup>56</sup> California Department of Conservation. Table 4, Cities and Counties Affected by Alquist Priolo Earthquake Fault Zones as of January 2010. https://maps.conservation.ca.gov/cgs/EQZApp/app/

<sup>&</sup>lt;sup>57</sup> United States Geological Survey. Quaternary Fault and Fold Database of the United States; Lower Elysian Park thrust (Class A) No. 134. June 2017. https://earthquake.usgs.gov/static/lfs/nshm/qfaults/Reports/134.pdf

<sup>&</sup>lt;sup>58</sup> United States Geological Survey. <u>U.S. Quaternary Faults Map.</u>



# EXHIBIT 3-3 GEOLOGY MAP

Source: United States Geological Survey

### **B.** Would the project result in substantial soil erosion or the loss of topsoil? • Less than Significant Impact.

The United States Department of Agriculture's (USDA) Web Soil Survey was consulted to determine the nature of the soils that underlie the project site. According to the USDA Web Soil Survey, the site is underlain by 45% Urban Land, 25% Thums, and 15% Pierview.<sup>59</sup> Urban Land – Thums-Pierview complex soils have a slight risk for erosion; however, construction activities and the placement of "permanent vegetative cover" will reduce the soil's erosion risk. The site will continue to be level and no slope failure or landslide impacts are anticipated to occur.

The project applicant will be required to prepare a Stormwater Pollution Prevention Program (SWPPP) pursuant to Federal NPDES regulations since the project would connect to the city's MS4. The SWPPP will contain construction best management practices (BMPs) that will restrict the discharge of sediment into the streets and local storm drains. In addition, the Applicant will be required to obtain a grading permit and the approval of a final grading plan and erosion control plan which will further reduce the potential for adverse erosion impacts. *As a result, the impacts will be less than significant*.

**C.** Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse? • Less Than Significant Impact.

Based on information obtained from the United States Department of Agriculture (USDA) Natural Resources Conservation Service Web Soil Survey online database, the subject property is mapped as majorly Urban land. Shrinking and swelling is influenced by the amount of clay present in the underlying soils. The project site is underlain by soils of various soil associations, which have various levels of clay. Slopes range from 0 to 5 percent. Soils of this association are at a moderate risk for erosion; however, the project site was previously developed and the underlying soils have been disturbed in order to facilitate previous construction activities. In addition, these soils are described as being used almost exclusively for residential and industrial development, as evident by the current level of urbanization present within the surrounding areas. <sup>60</sup> As previously mentioned, the project site is not located in an area that is subject to liquefaction (refer to Exhibit 3-3). <sup>61</sup> The soils that underlie the project site pose no threat to development; in addition, the project site will remain level once the project is complete. Therefore, the proposed project will not expose any person or structure to risks associated with soil collapse, landslides, or soil expansion. *As a result, the potential impacts are less than significant*.

**D.** Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (2020), creating substantial direct or indirect risks to life or property? ● Less Than Significant Impact.

The surrounding area is level and is at no risk for landslides (refer to Exhibit 3-3). Lateral spreading is a phenomenon that is characterized by the horizontal, or lateral, movement of the ground. Lateral spreading could be liquefaction induced or can be the result of excess moisture within the underlying soils. The proposed project is located within an area that is subject to liquefaction though the site is level with no hillside areas present. Therefore, lateral spreading caused by liquefaction will not affect the project site. The proposed project will not expose future employees and patrons to subsidence. All of the proposed project's

<sup>&</sup>lt;sup>59</sup> United States Department of Agriculture. Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

<sup>60</sup> United States Department of Agriculture, Soil Conservation Service. Report and General Soil Map, Los Angeles County, California. Revised 1969.

<sup>61</sup> California Department of Conservation. Regulatory Maps. http://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=regulatorymaps.

structural elements must be in compliance with Title 24 of the California Code of Regulations, which identifies building standards for seismic-related construction requirements that have been promulgated by the State of California. The standard development and design measures will be effective in minimizing potential risks stemming from liquefaction. As a result, the potential impacts are considered to be less than significant.

E. Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water? ● No Impact.

The proposed project will not utilize septic tanks or other alternative wastewater disposal systems. No impact associated with the use of septic tanks will occur since the new deve4lopment will connect to the City's sanitary sewer system. As a result, no impacts will result.

**F.** Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature? ● No Impact.

According to the State of California Geological Survey, the site's geology is classified as "Alluvium" (Qal). Alluvial deposits are typically quaternary in age (from two million years ago to the present day) and span the two most recent geologic epochs, the Pleistocene and the Holocene. Alluvium soil deposits that are present in a natural and undisturbed condition may contain paleontological resources, though these resources are more typically found in marine terraces and shales. The on-site soils have undergone disturbance due to the previous development and other on-site activities. In addition, the on-site soils that underlie the property are Holocene-aged deposits that have a low potential for the discovery of paleontological resources. These soils are recent deposits that do not contain fossil deposits. Therefore, the proposed project is not anticipated to disturb any paleontological resources. As a result, no impacts will occur.

## **CUMULATIVE IMPACTS**

The analysis herein determined that the proposed project would not result in significant adverse impacts related to ground shaking, liquefaction, landslides, soil erosion, lateral spreading, or subsidence. In addition, such cumulative impacts are generally site specific. As a result, no cumulative impacts will occur.

#### MITIGATION MEASURES

The analysis indicated that the proposed project would not result in any geological impacts. As a result, no mitigation measures are required.

<sup>62</sup> United States Geological Survey. What is the Quaternary? http://geomaps.wr.usgs.gov/sfgeo/quaternary/stories/what is.html

# 3.8 GREENHOUSE GAS EMISSIONS

| Environmental Issue Areas Examined                                                                                                                        | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?      |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases? |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment? • Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

The State of California requires CEQA documents to include an evaluation of greenhouse gas (GHG) emissions or gases that trap heat in the atmosphere. Examples of GHG that are produced both by natural and industrial processes include carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide ( $N_2O$ ). The accumulation of GHG in the atmosphere regulates the earth's temperature. Without these natural GHG, the Earth's surface would be about 61°F cooler. However, emissions from fossil fuel combustion have elevated the concentrations of GHG in the atmosphere to above natural levels. These man-made GHG will have the effect of warming atmospheric temperatures with the attendant impacts of changes in the global climate, increased sea levels, and changes to the worldwide biome. The major GHG that influence global warming are described below.

<sup>63</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>&</sup>lt;sup>64</sup> California, State of. OPR Technical Advisory – CEQA and Climate Change: Addressing Climate Change through the California Environmental Quality Act (CEQA) Review. June 19, 2008.

- Water Vapor. Water vapor is the most abundant GHG present in the atmosphere. While water vapor is not considered a pollutant, it remains in the atmosphere where it maintains a climate necessary for life. Changes in the atmospheric concentration of water vapor is directly related to the warming of the atmosphere rather than a direct result of industrialization. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to "hold" more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere. When water vapor increases in the atmosphere, more of it will eventually also condense into clouds, which are more able to reflect incoming solar radiation. This will allow less energy to reach the Earth's surface thereby affecting surface temperatures.
- Carbon Dioxide (CO<sub>2</sub>). The natural production and absorption of CO<sub>2</sub> is achieved through the terrestrial biosphere and the ocean. Manmade sources of CO<sub>2</sub> include the burning coal, oil, natural gas, and wood. Since the industrial revolution began in the mid-1700's, these activities have increased the atmospheric concentrations of CO<sub>2</sub>. Prior to the industrial revolution, concentrations were fairly stable at 280 parts per million (ppm). The International Panel on Climate Change (IPCC Fifth Assessment Report, 2014) Emissions of CO<sub>2</sub> from fossil fuel combustion and industrial processes contributed about 78% of the total GHG emissions increase from 1950 to 2010, with a similar percentage contribution for the increase during the period 2000 to 2010. <sup>65</sup>
- Methane (CH<sub>4</sub>). CH<sub>4</sub> is an extremely effective absorber of radiation, although its atmospheric concentration is less than that of CO<sub>2</sub>. Methane's lifetime in the atmosphere is brief (10 to 12 years), compared to some other GHGs (such as CO<sub>2</sub>, N<sub>2</sub>O, and Chlorofluorocarbons (CFCs). CH<sub>4</sub> has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other human-related sources of methane production include fossil-fuel combustion and biomass burning.
- Nitrous Oxide (N<sub>2</sub>O). Concentrations of N<sub>2</sub>O also began to increase at the beginning of the industrial revolution. In 1998, the global concentration of this GHG was documented at 314 parts per billion (ppb). N<sub>2</sub>O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is also commonly used as an aerosol spray propellant.
- Chlorofluorocarbons (CFC). CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane (C<sub>2</sub>H<sub>6</sub>) with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the Earth's surface). CFCs have no natural source but were first synthesized in 1928. This effort was extremely successful, and the levels of the major CFCs are now remaining level or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years.
- *Hydrofluorocarbons (HFC)*. HFCs are synthetic man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential. The HFCs with the largest measured atmospheric abundances are (in order), HFC-23 (CH<sub>3</sub>), HFC-134a (CF<sub>3</sub>CH<sub>2</sub>F), and HFC-152a (CH<sub>3</sub>CHF<sub>2</sub>). Prior to 1990, the only significant

<sup>65</sup> International Panel on Climate Change. Climate Change 2014 Synthesis Report Summary for Policymakers.

emissions were HFC-23. HFC-134a use is increasing due to its use as a refrigerant. Concentrations of HFC-23 and HFC-134a in the atmosphere are now about 10 parts per trillion (ppt) each. Concentrations of HFC-152a are about 1 ppt. HFCs are manmade and used for applications such as automobile air conditioners and refrigerants.

- *Perfluorocarbons (PFC)*. PFCs have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. High-energy ultraviolet rays about 60 kilometers above Earth's surface are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (CF<sub>4</sub>) and hexafluoroethane (C<sub>2</sub>F<sub>6</sub>). Concentrations of CF<sub>4</sub> in the atmosphere are over 70 ppt. The two main sources of PFCs are primary aluminum production and semiconductor manufacturing.
- Sulfur Hexafluoride (SF<sub>6</sub>). SF<sub>6</sub> is an inorganic, odorless, colorless, nontoxic, nonflammable gas. SF<sub>6</sub> has the highest global warming potential of any gas evaluated; 23,900 times that of CO<sub>2</sub>. Concentrations in the 1990s where about 4 ppt. Sulfur hexafluoride is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.

GHGs are emitted by both natural processes and human activities. Examples of GHG that are produced both by natural and industrial processes include carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide ( $N_2O$ ). The SCAQMD has adopted interim GHG thresholds for development projects within the South Coast Air Basin. According to the SCAQMD, the interim thresholds for industrial projects are 10,000 MTCO<sub>2</sub>E per year.<sup>66</sup> Table 3-5 summarizes annual greenhouse gas ( $CO_2E$ ) emissions from build-out of the proposed project. Carbon dioxide equivalent, or  $CO_2E$ , is a term that is used for describing different greenhouse gases in a common and collective unit. As indicated in Table 3-5, the  $CO_2E$  total for the project is 482.99 MTCO<sub>2</sub>E per year which is below the aforementioned threshold for industrial projects.

Table 3-5 Greenhouse Gas Emissions Inventory

| Source                                         | GHG Emissions (tons/year) |                 |                  |                            |  |
|------------------------------------------------|---------------------------|-----------------|------------------|----------------------------|--|
|                                                | CO <sub>2</sub>           | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> E          |  |
| Long-Term – Area Emissions                     |                           |                 | 0.00             |                            |  |
| Long-Term - Energy Emissions                   | 76.06                     |                 |                  | 76.46                      |  |
| Long-Term - Mobile Emissions                   | 241.25                    | 0.01            | 0.01             | 244.67                     |  |
| Long-Term – Waste Emissions                    | 19.07                     | 1.13            | 0.00             | 47.24                      |  |
| Long-Term – Water Emissions                    | 60.69                     | 0.75            | 0.02             | 85.09                      |  |
| Long-Term - Total Emissions                    | 397.08                    | 1.90            | 0.03             | 453-47                     |  |
| <b>Total Construction Emissions</b>            | 477.79                    | 0.09            |                  | 482.99                     |  |
| Construction Emissions Amortized Over 30 Years |                           | •               |                  | 16.10 MTCO <sub>2</sub> E  |  |
| Total Operational Emissions                    |                           |                 |                  | 453.47 MTCO <sub>2</sub> E |  |
| Significant Impact?                            |                           |                 |                  | No                         |  |

It is important to note that the project is an "infill" development, which is seen as an important strategy in combating the release of GHG emissions. As a result, the potential impacts are considered to be less than significant.

 $<sup>^{66}</sup>$  SCAQMD. Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans. Agenda No. 31. December 5, 2008. https://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/ghgboardsynopsis.pdf

**B.** Would the project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases? • Less than Significant Impact.

The City of Santa Fe Springs does not presently have an adopted Climate Action Plan. However, the City's General Plan includes a Conservation Element that has an air quality focus. In this section, the following policies related to air quality are identified:

- *Policy 2.1:* Continue to research alternatives and pollution control measures that influence air quality, including trip reductions, carpooling, and local transit services.
- *Policy 2.2:* Encourage urban infill and land uses and densities that result in reduced trips and reduced trip lengths, and that support non-motorized modes of travel.
- *Policy 2.3:* Initiate capital improvement programs that allow for bus turnouts, traffic synchronization, and intersection channelization.
- *Policy 2.4*: Continue to participate and support cooperative programs between cities which will reduce trips and vehicle miles traveled.

AB 32 requires the reduction of GHG emissions to 1990 levels, which would require a minimum 28 percent reduction in "business as usual" GHG emissions for the entire State. Additionally, Governor Edmund G. Brown signed into law Executive Order (E.O.) B-30-15 on April 29, 2015, the Country's most ambitious policy for reducing Greenhouse Gas Emissions. E.O. B-30-15 calls for a 40 percent reduction in greenhouse gas emissions below 1990 levels by 2030.<sup>67</sup> The proposed project will not involve or require any variance from the aforementioned policies. Furthermore, the proposed project will not involve or require any variance from the adopted City of Santa Fe Springs General Plan (Energy and Conservation Element) or the Air Quality Management Plan, policy, or regulation governing GHG emissions. There will also be a regional benefit in terms of a reduction in vehicle miles traveled (VMT) because it is an infill project that is consistent with the regional and State sustainable growth objectives identified in the State's Strategic Growth Council (SGC). As a result, the impacts will be less than significant.

### **CUMULATIVE IMPACTS**

According to the City, there are four cumulative projects located within one and one-half mile from the project site. These four cumulative projects are as follows: 128 DU located at 13300 Lakeland Road; a 134,552 square-foot self-storage facility located at 11212 Norwalk Boulevard; a 22,994 square-foot warehouse located at 10370 Slusher Drive; and an 86-room hotel located at the southwest corner of Norwalk Boulevard and Telegraph Road. The cumulative GHG emissions from the five projects (including the proposed project) will still be below the thresholds of significance established by the SCAQMD (the CalEEMod worksheets for the cumulative emissions are provided in the Appendix). As indicated in the worksheets, the total combined Operational GHG emissions from the project will be 453.47 MTCO2E per year which is below the single established draft threshold of 10,000 MTCO<sub>2</sub>E for new development. It is important to note that climate change and global warming is a world-wide issue that will only be addressed at the regional and worldwide level. New and replacement projects will enable GHG reductions to be realized at the local level.

<sup>&</sup>lt;sup>67</sup> Office of Governor Edmund G. Brown Jr. New California Goal Aims to Reduce Emissions 40 Percent Below 1990 Levels by 2030. http://gov.ca.gov/news.php?id=18938

## MITIGATION MEASURES

The analysis determined that the impacts from the proposed project's implementation would be less than significant. As a result, no mitigation measures are required.

# 3.9 HAZARDS AND HAZARDOUS MATERIALS

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                  | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?                                                                                                                    |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?                                                            |                                      |                                                          | ×                                  |              |
| C. Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?                                                                                                   |                                      |                                                          | ×                                  |              |
| <b>D.</b> Would the project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?                                        |                                      |                                                          |                                    | ×            |
| E. For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area? |                                      |                                                          |                                    | ×            |
| <b>F.</b> Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?                                                                                                                                  |                                      |                                                          |                                    | ×            |
| <b>G.</b> Would the project expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?                                                                                                                    |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? • Less than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be

dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>68</sup>

The proposed use will be enclosed within a concrete tilt-up building and will not present a noise, sight, odor, light, or other environmental impact. The AQMD Rule 1401 does not permit nuisance odors to emanate from a business or industrial use. In addition, the City of Santa Fe Springs Municipal Code regulates onsite noise during construction and operations. Finally, the Santa Fe Springs Fire Department (SFSFD) and the Los Angeles County Fire Department is responsible for the regulation of the local transport, storage, and handling of hazardous materials onsite. Any such materials used or stored onsite must be clearly identified on the building's exterior and recorded with the SFSFD. Finally, the SFSFD will conduct periodic inspections of the building and site to ensure that the building and safety codes are being adhered to. As a result, the impacts will be less than significant.

**B.** Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? • Less Than Significant Impact.

The project area totals 5.03 acres. The proposed use of the project site will be enclosed within a concrete tilt-up building and will not present a noise, sight, odor, light, or other environmental impact to the surrounding area. Adherence to the requirements and regulations identified in the aforementioned section will reduce the potential impacts. As a result, the impacts would be less than significant.

**C.** Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? ● Less than Significant Impact.

The closest school is Lakeland Elementary School, located approximately 0.31 miles southwest of the project site. The proposed use of the project site will be enclosed within a concrete tilt-up building and will not present a noise, sight, odor, light, or other environmental impact to any existing or proposed schools. As a result, the impacts would be less than significant.

**D.** Would the project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? • No Impact.

A search of the Envirostor Hazardous Waste and Substances Site "Cortese" List database identified 91 Cortese sites within city boundaries. The nearest of these Cortese sites to the project site is Powerline Oil Company Refinery/Cenco Refinery and Continental Heat treating. Both cleanup sites are under evaluation though neither site is located within the proposed project site boundaries. <sup>69</sup> As a result, no impacts will occur.

<sup>68</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>69</sup> California Department of Toxic Substances Control, Envirostor. Hazardous Waste and Substances Site Cortese List.

**E.** For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or private use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area? ● No Impact.

The project site is not located within two miles of a public airport or public use airport. Fullerton Airport is located approximately 6.79 miles southeast of the project site, the Long Beach Airport is located approximately 9.81 miles to the southwest, and the Joint Forces Training Base in Los Alamitos is located ten miles south of the site.<sup>70</sup> The proposed project is not located within the Runway Protection Zones (RPZ) of any of the aforementioned airports. In addition, the proposed project will not penetrate the designated slopes for any of the aforementioned airports. Essentially, the proposed project will not introduce a building that will interfere with the approach and take-off of airplanes utilizing any of the aforementioned airports and will not risk the safety of the people working in the project area. *As a result, no impacts will occur*.

**F.** Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? • No Impact.

At no time will Norwalk Boulevard or Florence Avenue be completely closed to traffic during construction. The construction plan must identify specific provisions for the regulation of construction vehicle ingress and egress to the site during construction as a means to provide continued through-access. All construction staging must occur on-site in accordance with City requirements. Furthermore, no street closures will occur during the proposed project's operations. *As a result, no impacts will occur.* 

**G.** Would the project expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires? • No Impact.

The project site is not located within a "very high fire hazard severity zone." As a result, no impact will result.

#### **CUMULATIVE IMPACTS**

The potential impacts related to hazards and hazardous materials are site-specific. According to the City, there are four cumulative projects located within one mile from the project site. These four cumulative projects are as follows: 128 units located at 13300 Lakeland Road; a 134,552 square-foot self-storage facility located at 11212 Norwalk Boulevard; a 22,994 square-foot warehouse located at 10370 Slusher Drive; and an 86-room hotel located at the southwest corner of Norwalk Boulevard and Telegraph Road. The analysis herein determined that the implementation of the proposed project would not result in any significant adverse impacts related to hazards and/or hazardous materials. As a result, no cumulative impacts related to hazards or hazardous materials will result from the proposed project's implementation.

#### MITIGATION MEASURES

The analysis of potential impacts related to hazards and hazardous materials indicated that no significant adverse impacts would result from the proposed project's approval and implementation. As a result, no mitigation measures are required.

<sup>7</sup>º Toll-Free Airline. Los Angeles County Public and Private Airports, California. http://www.tollfreeairline.com/california/losangeles.htm.

# 3.10 HYDROLOGY AND WATER QUALITY

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>with<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or groundwater quality?                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                                          |                                    | ×            |
| C. Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would result in substantial erosion or siltation on- or off-site; substantially increase the rate or amount of surface runoff in a manner which would result in flooding onor offsite; create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or, impede or redirect flood flows? |                                      |                                                          | ×                                  |              |
| <b>D.</b> In flood hazard, tsunami, or seiche zones, would the project risk release of pollutants due to project inundation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                          |                                    | ×            |
| E. Would the project conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or groundwater quality? • Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.<sup>71</sup>

The proposed project would be required to implement stormwater pollution control measures pursuant to the National Pollutant Discharge Elimination System (NPDES) requirements. The Applicant would also be required to prepare a Water Quality Management Plan (WQMP) utilizing Best Management Practices

<sup>&</sup>lt;sup>71</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

(BMPs) to control or reduce the discharge of pollutants to the maximum extent practicable. The WQMP will also identify post-construction BMPs that will be the responsibility of the Applicant to implement over the life of the project. The Applicant will also be required to prepare and implement a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP is required by the city and will be submitted to the Chief Building Official and City Engineer prior to the issuance of a grading permit. The Applicant shall register their SWPPP with the State of California. *By complying with this required regulation, potential impacts would remain less than significant.* 

**B.** Would the project substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin? ● No Impact.

The proposed project will be connected to the City's utility lines and will not deplete groundwater supplies. Since there are no underground wells on-site that would be impacted by the proposed development, no direct impacts on groundwater withdrawals will occur. As a result, no impacts will occur.

C. Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would result in substantial erosion or siltation on- or off-site; substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite; create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or, impede or redirect flood flows? • Less Than Significant.

The project's construction will be restricted to the designated project site and the project will not alter the course of any stream or river that would lead to on- or off-site siltation or erosion. The site was formerly used as storage and utilization of Oil Well Service Company's construction materials, utility poles, and electrical equipment. The site in its entirety has been developed and no natural drainage areas remain. No grading and/or excavation extending into the local aquifer will occur. No additional undisturbed land will be affected. No drainage or riparian areas are located within the project site. The future site runoff capacity will not significantly change since the amount of impervious surfaces will not significantly change. As a result, the potential impacts will be less than significant.

**D.** In flood hazard, tsunami, or seiche zones, would the project risk release of pollutants due to project inundation? • No Impact.

According to the City of Santa Fe Springs Natural Hazards Mitigation Plan, "The 100-year flooding event is a flood having a one percent chance of being equaled or exceeded in magnitude in any given year. Contrary to popular belief, it is not a flood occurring once every 100 years. The 100-year floodplain is the area adjoining a river, stream, or watercourse covered by water in the event of a 100-year flood." According to the Los Angeles County Department of Public Works, the project site is not located within a designated 100-year flood hazard area, as defined by the Federal Emergency Management Agency (FEMA).<sup>72</sup> According to the FEMA flood insurance map obtained from the Los Angeles County Department of Public Works, the

<sup>72</sup> Federal Emergency Management Agency. Flood Zones. http://www.fema.gov/flood-zones.

proposed project site is located in Zone X.<sup>73</sup> This flood zone has an annual probability of flooding of less than 0.2% and represents areas outside the 500-year flood plain. Thus, properties located in Zone X are not located within a 100-year flood plain. As a result, the proposed project will not involve the placement of any structures that would impede or redirect potential floodwater flows through since the site is not located within a flood hazard area. Therefore, no flood-related impacts are anticipated with the proposed project's implementation. The Santa Fe Springs General Plan and the city's Natural Hazards Mitigation Plan indicates the greatest potential for dam failure and the attendant inundation comes from the Whittier Narrows Dam located approximately five miles northwest of the project site. The City of Santa Fe Springs Multi-Hazard Functional Plan states there is a low risk that the City will experience flooding due to dam failure. The proposed project is not located in an area that is subject to inundation by seiche or tsunami. As indicated earlier, there are no rivers located in the vicinity that would result in a seiche. In addition, the project site is located approximately 22 miles inland from the Pacific Ocean and the project site would not be exposed to the effects of a tsunami.<sup>74</sup> Lastly, the proposed project will not result in any mudslides since the project site is generally level and is not located near any slopes. *As a result, no impacts will occur*.

**E.** Would the project conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan? ● Less than Significant Impact

The proposed project will be in compliance with the City of Santa Fe Springs Municipal Code that outlines the local requirements for the implementation of the NPDES and MS4 stormwater runoff requirements. In addition, the project's operation will not interfere with any groundwater management or recharge plan because there are no active groundwater management recharge activities on-site or in the vicinity. As indicated in Section 3.10.A, the proposed project would be required to implement stormwater pollution control measures pursuant to the NPDES requirements. The Applicant would also be required to prepare a WQMP utilizing Best Management Practices to control or reduce the discharge of pollutants to the maximum extent practicable. In addition, the Applicant must prepare and implement a Storm Water Pollution Prevention Plan (SWPPP) in order to ensure that potential water quality impacts are addressed. The aforementioned requirements will reduce the potential impacts to levels that are less than significant.

#### **CUMULATIVE IMPACTS**

The potential impacts related to hydrology and storm water runoff are typically site-specific. Furthermore, the analysis determined that the implementation of the proposed project would not result in any significant adverse impacts with the adoption of the appropriate mitigation measures. As a result, no cumulative impacts are anticipated.

### **MITIGATION MEASURES**

The analysis of potential impacts related to hydrology and water quality indicated that no significant adverse impacts would result from the proposed project's approval and implementation if it remains in compliance with Santa Fe Springs Code of Ordinances. As a result, no mitigation measures are required.

<sup>73</sup> Los Angeles County Department of Public Works. Flood Zone Determination Website. <a href="http://dpw.lacounty.gov/wmd/floodzone/">http://dpw.lacounty.gov/wmd/floodzone/</a>. Website accessed July 15,2022.

<sup>74</sup> Google Earth. Website accessed July 15,2022.

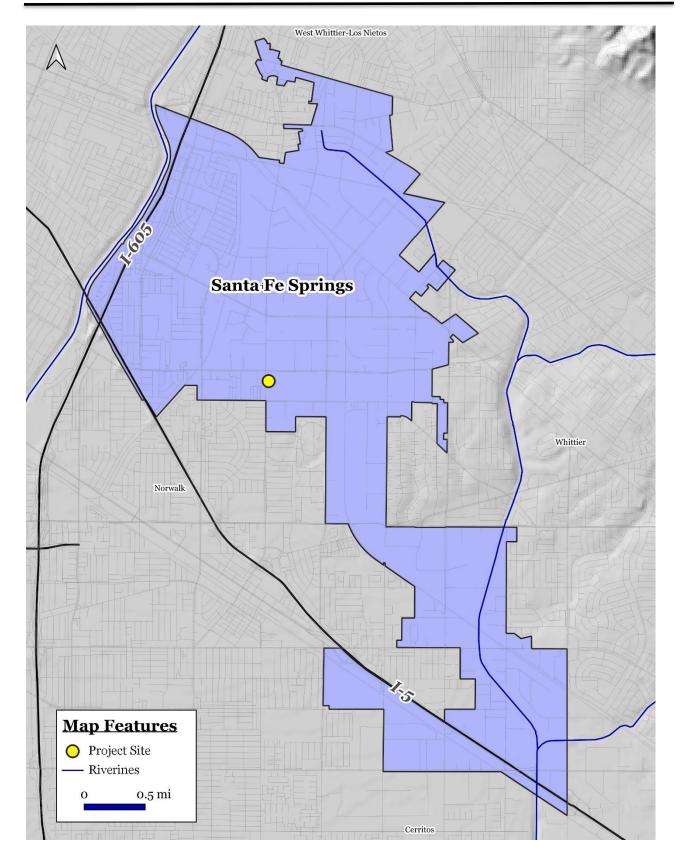



EXHIBIT 3-4
WATER RESOURCES MAP

Source: Los Angeles County Department of Public Works

# 3.11 LAND USE AND PLANNING

| Environmental Issue Areas Examined                                                                                                                                                                              | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project physically divide an established community?                                                                                                                                         |                                      |                                                          |                                    | ×            |
| <b>B.</b> Would the project cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

#### **A.** Would the project physically divide an established community? • No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

The 5.03-acre (219,234 square feet) site is surrounded by industrial uses with residential uses located further west and to the southwest. Exhibit 2-4 shows an aerial photograph of the project site and the adjacent development. Surrounding land uses in the vicinity of the project site are listed below:

• North of the Project Site. A mix of commercial and heavy manufacturing uses are located north of the project site. Two industrial commercial locations are located directly to the north of the former Oil Well Service Company building occupying the western portion of the project site, Valve and Steel Supply Hardware Store and Moon Equipment Company. A commercial plaza is located further north on the southeastern corner of Florence Avenue and Norwalk Boulevard. NHK Laboratories Inc is located north of the larger project parcel

 $<sup>^{75}</sup>$  HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

- South of the Project Site. Heavy Manufacturing land usage extends along the project site's southern side. R.B. Paint and Body Center is located to the south of the former Oil Well Service Company building occupying the western portion of the project site. Western Water Works Supply Company abuts the property's eastern larger portion of the project site. Further south, approximately 850 feet, Lakeland Road extends in an east-west orientation. Lakeland Villa mobile residential development is located to the southwest of the project site.
- East of the Project Site. Goodman Logistics Center Santa Fe Springs is located to the east side of the project site. Multiple tenants currently occupy the Logistics Center Buildings such as RIM Logistics Itd., Fn Logistics Inc., Funai Consumer Electronics Company, and Fashion Nova Distribution Center.
- West of the Project Site. Quality Lift and Equipment Forklift Rental Service are directly to the west
  of the project site along Norwalk Boulevard. Silverio's Party Supply, Matias Flowers, and CTD Inc.
  Guadalajara Tile Distributors Inc. are located to the northwest of the project site.<sup>76</sup>

The proposed project will not divide an established community. As a result, no impacts will occur.

**B.** Would the project cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? • Less than Significant Impact.

The proposed project will require the following discretional approvals:

• The Development Plan Approval Case No. 99 (DPA 999);

The project will be required to conform to the City's design requirements with respect to the building's architectural design. With the proposed project's approval with DPA 999, the impacts will be less than significant.

#### **CUMULATIVE IMPACTS**

The potential cumulative impacts with respect to land use are site-specific. Furthermore, the analysis determined that the proposed project will not result in any impacts. As a result, no cumulative land use impacts will occur as part of the proposed project's implementation.

#### **MITIGATION MEASURES**

No mitigation is required.

 $<sup>^{76}</sup>$  Google Maps. Website Accessed July 18,2022.

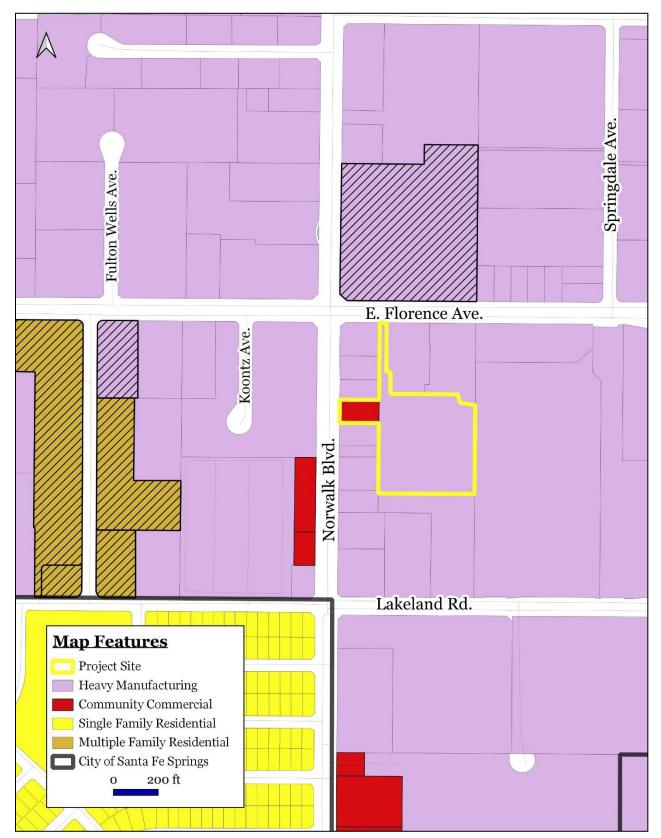



EXHIBIT 3-5

LAND USE MAP

SOURCE: CITY OF SANTA FE SPRINGS

# 3.12 MINERAL RESOURCES

| Environmental Issue Areas Examined                                                                                                                                                             | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?                                |                                      |                                                          |                                    | ×            |
| <b>B.</b> Would the project result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project result in the loss of availability of a known mineral resource that would be of value is to the region and the residents of the state? ● No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

According to SMARA study area maps prepared by the California Geological Survey, the City of Santa Fe Springs is located within the larger San Gabriel Valley SMARA (identified as the Portland cement concrete-grade aggregate). However, as indicated in the San Gabriel Valley P-C region MRZ-2 map, the project site is not located in an area where there are significant aggregate resources present. In addition, the project site is not located in an area with active mineral extraction activities. *As a result, no impacts will occur*.

**B.** Would the project result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? ● No Impact.

<sup>77</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

 $<sup>^{78}</sup>$  California Department of Conservation. San Gabriel Valley P-C Region Showing MRZ-2 Areas and Active Mine Operations. ftp://ftp.consrv.ca.gov/pub/dmg/pubs/sr/SR\_209/Plate%201.pdf.

A review of the San Gabriel Valley P-C region MRZ-2 map indicated that the project site is not located in an area that contains aggregate resources. Therefore, the project's implementation will not contribute to a loss of availability to locally important mineral resources. Furthermore, the resources and materials that will be utilized for the construction of the proposed project will not include any materials that are considered rare or unique. As a result, no impacts will occur.

#### **CUMULATIVE IMPACTS**

The potential impacts on mineral resources are site-specific. Furthermore, the analysis determined that the proposed project would not result in any impacts on mineral resources. As a result, no cumulative impacts will occur.

#### **MITIGATION MEASURES**

The analysis of potential impacts related to mineral resources indicated that no impacts would result from the proposed project's implementation. As a result, no mitigation measures are required.

<sup>&</sup>lt;sup>79</sup> California Department of Conservation. San Gabriel Valley P-C Region Showing MRZ-2 Areas and Active Mine Operations. ftp://ftp.consrv.ca.gov/pub/dmg/pubs/sr/SR\_209/Plate%201.pdf.



EXHIBIT 3-6
MINERAL RESOURCES MAP

Source: Well Finder

### **3.13** Noise

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                             | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?                           |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project result in generation of excessive ground borne vibration or ground borne noise levels?                                                                                                                                                                                             |                                      |                                                          | ×                                  |              |
| <b>C.</b> For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people reside or working in the project area to excessive noise levels? |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies? • Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

Noise levels may be described using a number of methods designed to evaluate the "loudness" of a particular noise. The most commonly used unit for measuring the level of sound is the decibel (dB). Zero on the decibel scale represents the lowest limit of sound that can be heard by humans. The eardrum may rupture at 140 dBA. In general, an increase of between 3.0 dB and 5.0 dB in the ambient noise level is considered to

<sup>80</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

represent the threshold for human sensitivity. In other words, increases in ambient noise levels of 3.0 dB or less are not generally perceptible to persons with average hearing abilities.<sup>81</sup> Noise levels that are associated with common, everyday activities are illustrated in Exhibit 3-7. Noise levels may be described using a number of methods designed to evaluate the "loudness" of a particular noise.

The ambient noise environment within the project area is dominated by traffic noise emanating from Norwalk Boulevard. An Extec was used to conduct the noise measurements. The meter was performed using a slow response setting, with an "A" weighting. The noise meter's height above the ground surface was five feet. A series of 100 discrete noise measurements were recorded in one single location. These measurements were taken along the east side of Norwalk Boulevard approximately 60 feet west of the project site's western property line. The measurements were taken on a Friday morning at 9:15 AM. The results of the survey are summarized in Table 3-6. The median ambient exterior noise level ( $L_{50}$ ) was 68.3 dBA at the measurement location. The  $L_{50}$  represents the noise level that is exceeded 50% of the time (half the time the noise level exceeds this level and half the time the noise level is less than this level). As shown in Table 3-6, the average ambient noise levels were 68.67 dBA within the measurement locations.

Table 3-6 Noise Measurement Results

| Noise Metric                                | Noise Level (dBA)<br>Norwalk Blvd |
|---------------------------------------------|-----------------------------------|
| L <sup>50</sup> (Noise levels <50% of time) | 68.3 dBA                          |
| L <sup>75</sup> (Noise levels <75% of time) | 69.5 dBA                          |
| L90 (Noise levels <90% of time)             | 71.1 dBA                          |
| L99 (Noise levels <99% of time)             | 72.7 dBA                          |
| L <sub>min</sub> (Minimum Noise Level)      | 52.7 dBA                          |
| L <sub>max</sub> (Maximum Noise Level)      | 81.8 dBA                          |
| Average Noise Level                         | 68.67 dBA                         |

Source: Blodgett Baylosis Environmental Planning.

As indicated in Table 3-6, the ambient noise environment within and around the project site is typical for a site located next to a major arterial roadway along an industrial corridor. In addition, the proposed use is not considered to be a noise sensitive land use. The existing noise levels within the measurement location are below the 70 dBA thresholds for certain industrial land uses. In order to further reduce construction noise levels, the following goal listed in the Noise Element of the City's General Plan is reiterated as a standard condition:

• Minimize construction-related noise and vibration by limiting construction activities within 500 feet of noise-sensitive uses from 7:00 PM to 7:00 AM, seven days a week.

The aforementioned provision related to construction noise will apply to the proposed project. The adherence to these regulations will reduce the potential construction noise impacts to levels that are less than significant. In addition, the proposed project's net increase in traffic (112 average daily trips) will not be great enough to result in a doubling of traffic on local streets.

<sup>81</sup> Bugliarello, et. al. The Impact of Noise Pollution, Chapter 127, 1975.

**B.** Would the project result in generation of excessive ground borne vibration or ground borne noise levels? ● Less Than Significant Impact.

The nearest land use that may potentially be impacted by ground-borne vibration and noise (primarily from the use of heavy construction equipment) are the Lakeland Villa mobile residential development located approximately 300 feet southeast of the project site north of Lakeland Road. The noisiest phases of construction are anticipated to be 82 dBA as measured at a distance of 50 feet from the construction activity. The construction noise levels will decline as one moves further away from the noise source. This effect is known as *spreading loss*. In general, the noise level adjustment that takes the spreading loss into account calls for a 6.0 dBA reduction for every doubling of the distance beginning with the initial 50-foot distance. Noise levels associated with various types of construction equipment are summarized in Exhibit 3-8.

The noise levels are those that would be expected at a distance of 50 feet from the noise source. Composite construction noise is best characterized in a study prepared by the Bolt, Beranek, and Newman. 82 In the study, the noisiest phases of construction are anticipated to be 89 dBA as measured at a distance of 50 feet from the construction activity. In later phases during building erection, noise levels are typically reduced from these values and the physical structures further break up line-of-sight noise. Certain types of construction equipment will also potentially result in vibration. The background vibration velocity level in residential areas is usually around 50 vibration velocity level (VdB). The vibration velocity level threshold of perception for humans is approximately 65 VdB. A vibration velocity of 75 VdB is the approximately dividing line between barely perceptible and distinctly perceptible levels for many people. Sources within buildings such as operation of mechanical equipment, movement of people, or the slamming of doors causes most perceptible indoor vibration. Construction activities may result in varying degrees of ground vibration, depending on the types of equipment, the characteristics of the soil, and the age and construction of nearby buildings. The operation of construction equipment causes ground vibrations that spread through the ground and diminish in strength with distance.

Table 3-7 summarizes the levels of vibration and the usual effect on people and buildings. The U.S. Department of Transportation (U.S. DOT) has guidelines for vibration levels from construction related to their activities and recommends that the maximum peak-particle-velocity levels remain below 0.05 inches per second at the nearest structures. Vibration levels above 0.5 inches per second have the potential to cause architectural damage to normal dwellings. The U.S. DOT also states that vibration levels above 0.015 inches per second (in/sec) are sometimes perceptible to people, and the level at which vibration becomes an irritation to people is 0.64 inches per second. Typical levels from vibration generally do not have the potential for any structural damage. Some construction activities, such as pile driving and blasting, can produce vibration levels that may have the potential to damage some vibration sensitive structures if performed within 50 to 100 feet of the structure. In this instance, no pile driving will be used. The reason that normal construction vibration does not result in structural damage has to do with several issues, including the frequency vibration and magnitude of construction related vibration.

<sup>82</sup> Design Guide for Traffic Noise Prediction. Bolt Beranek and Newman Inc., Van Nuys, California 91406. 1970

#### dB Levels 165 160 155 Serious 150 İnjary 145 sonic boom 140 136 130 125 jet take off at 200 ft. Pain music in night club interior 115 motorcycle at 20 ft. 110 power mower 105 100 freight train at 50 ft. 97 Discomfort food blender 90 electric mixer, light rail train horn **85** 80 **75** portable fan, roadway traffic at 50 ft. **70** 65 dishwasher, air conditioner **60 55** Range of normal conversation **50** Typical refrigerator, light traffic at 100 ft. 45 Noise 40 Levels library interior (quiet study area) **35** 30 25 20 15 rustling leaves **Threshold** 10 of 5 Hearing 0

# EXHIBIT 3-7 TYPICAL NOISE SOURCES AND LOUDNESS SCALE

Source: Blodgett Baylosis Environmental Planning

Typical noise levels 50-ft. from source

<u>70</u> <u>80 90</u> <u>100</u> **Compactors (Rollers) Front Loaders** Earth Moving Equipment **Backhoes Tractors** Equipment Powered by Internal Scrapers, Graders Combustion Engines **Pavers Trucks Concrete Mixers** Materials Handling Equipment **Concrete Pumps Cranes (Movable) Cranes (Derrick)** Stationary Equipment **Pumps Generators Compressors Pneumatic Wrenches Impact Jack Hammers Equipment Pile Drivers Vibrators** Other **Equipment** Saws

# EXHIBIT 3-8 TYPICAL CONSTRUCTION NOISE LEVELS

Source: Blodgett Baylosis Environmental Planning

Table 3-7 Common Effects of Construction Vibration

| Peak Particle<br>Velocity (in/sec) | Effects on Humans                                                                            | Effects on Buildings                                                                                       |
|------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <0.005                             | Imperceptible                                                                                | No effect on buildings                                                                                     |
| 0.005 to 0.015                     | Barely perceptible                                                                           | No effect on buildings                                                                                     |
| 0.02 to 0.05                       | Level at which continuous vibrations begin to annoy occupants of nearby buildings            | No effect on buildings                                                                                     |
| 0.1 to 0.5                         | Vibrations considered unacceptable for persons exposed to continuous or long-term vibration. | Minimal potential for damage to weak or sensitive structures                                               |
| 0.5 to 1.0                         | Vibrations considered bothersome by most people, however tolerable if short-term in length   | Threshold at which there is a risk of architectural damage to buildings with plastered ceilings and walls. |
| >3.0                               | Vibration is unpleasant                                                                      | Potential for architectural damage and possible minor structural damage                                    |

Source: U.S. Department of Transportation

The future building operations will be fully enclosed within a new concrete tilt-up building. Furthermore, there are no noise sensitive receptors located adjacent to the project site. The nearest noise sensitive land use are the Lakeland Villa mobile residential development located approximately 300 feet southeast of the project site north of Lakeland Road. As a result, the ground vibration impacts will be less than significant.

**C.** For a project located within the vicinity of an airport or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people reside or working in the project area to excessive noise levels? • No Impact.

The project site is not located within two miles of a public airport. The closest airport to the project site is the Fullerton Muir Airport is approximately 7 miles at 4011 Commonwealth Ave, Fullerton CA 92833.83 As a result, the project will not expose people working in the project area to excessive noise levels. *As a result, no impacts will occur.* 

#### **CUMULATIVE IMPACTS**

According to the City, there are four cumulative projects located within one mile from the project site. These four cumulative projects are as follows: 128 units located at 13300 Lakeland Road; a 134,552 square-foot self-storage facility located at 11212 Norwalk Boulevard; a 22,994 square-foot warehouse located at 10370 Slusher Drive; The number of trips that will be added to the adjacent roadways by the proposed project as well as by the cumulative projects will not result in a doubling of traffic volumes. The separation of the projects will eliminate the concentration of noise generating activities that would result in an increase in cumulative noise levels.

#### MITIGATION MEASURES

The analysis determined that no mitigation measures would be required.

<sup>83</sup> Google Earth. Website accessed July 15, 2022.

# 3.14 POPULATION AND HOUSING

| Environmental Issue Areas Examined Si                                                                                                                                                                                                        |  | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)? |  |                                                          | ×                                  |              |
| <b>B.</b> Would the project displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?                                                                                     |  |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)? • Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

Growth-inducing impacts are generally associated with the provision of urban services to an undeveloped or rural area. Any potential population growth will be indirect and will result from permanent employment growth. The employment projection is very minimal (up to 66 employees assuming one employee for every 1,518 square feet<sup>85</sup>) and is well within SCAG's employment projections for the City of Santa Fe Springs (refer to Section 3.3.2.A). As a result, the impacts would be less than significant.

<sup>84</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

 $<sup>^{85}\, \</sup>text{The Natelson Company, Inc.} \, \textit{Summary Report Employment Density Study}.$  October 31, 2001.

**B.** Would the project displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere? • No Impact.

As previously indicated, the project site is currently occupied by Oil Well Service Company's construction materials, utility poles, and electrical equipment. Thus, no housing or population displacement will result from the proposed project's implementation. *As a result, no impacts would occur*.

#### **CUMULATIVE IMPACTS**

The analysis of potential population and housing impacts indicated that no impacts would result from the proposed project's implementation. As a result, no cumulative impacts will occur.

#### **MITIGATION MEASURES**

The analysis of potential population and housing impacts indicated that no impacts would result from the proposed project's approval and implementation and no mitigation measures are required.

## 3.15 PUBLIC SERVICES

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| A. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: fire protection, police protection, schools, parks or other public facilities? |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

A. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: fire protection, police protection, schools, parks or other public facilities? •Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

#### Fire Department

The Santa Fe Springs Fire -Rescue Department provides fire prevention and emergency medical services within the City. The department consists of three separate divisions: Operations, Fire Prevention, and Environmental Protection. The Operations Division provides fire suppression, emergency medical services (EMS), hazardous materials response, and urban search and rescue. The Fire Prevention Division provides plan check, inspections, and public education. Finally, the Environmental Protection Division is responsible for responding to emergencies involving hazardous materials. The Fire Department

<sup>86</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

operates from four stations: Station No. 1 (11300 Greenstone Avenue), Station No. 2 (8634 Dice Road), Station No. 3 (15517 Carmenita Road), and Station No. 4 (11736 Telegraph Road). The first response station to the site is station No. 4, located 1.03 miles to the southeast of the project site. The Fire Department currently reviews all new development plans, and future development will be required to conform to all fire protection and prevention requirements, including, but not limited to, building setbacks and emergency access and the project will adhere to all pertinent building are fire codes.

The proposed project will be subject to review and approval by the Santa Fe Springs Fire-Rescue Department to ensure that safety and fire prevention measures are incorporated into the project. As part of the project review process, the Santa Fe Springs Fire-Rescue Department will review the project and make recommendations for fire protection services and fire flow rates. The Applicant and/or contractors must adhere to all of the recommendations of the Santa Fe Springs Fire-Rescue Department and the Department's review of the proposed project's site and development plans. These review requirements may include, but not be limited to, any required improvements to the water system (e.g., additional hydrants), building design, equipment turn-around areas, emergency setbacks, etc. All required improvements would be provided at the expense of the Applicant. In addition, the proposed project must comply with all applicable State and local codes and ordinances related to fire protection. In addition to the aforementioned standard condition, the proposed project will not negatively impact fire protection services because the project will be constructed in accordance with the most recent fire and building codes. The proposed project will replace an older more obsolete development with a more modern development that adheres to current development standards. land As a result, the potential impacts are considered to be less than significant.

#### Police Protection

Law enforcement services are provided by the Whittier Police Department who provide services to Santa Fe Springs under contract. The Police Services Station is located at 11576 Telegraph Road with the exception of jailing and dispatch, this Department is responsible for management of all law enforcement services within the City. The Department is staffed by both City personnel and officers of the Whittier Police Department, who provide services to Santa Fe Springs under contract. The City of Santa Fe Springs is divided into three law enforcement public service areas. Each area has a dedicated sergeant and a team of officers and public safety officers. The three area policing teams constantly monitor crime trends, problem locations and quality-of-life issues in their respective areas.<sup>87</sup>

The final site plan, elevations, building floor plans, and site circulation must be reviewed by the Whittier Police Department to ensure it conforms to their operational requirements. In addition, the primary potential security issues will be related to vandalism and potential burglaries during off-business hours. The project Applicant must install security cameras throughout the storage facility. Adherence to the aforementioned standard conditions and regulatory compliance measures will address the proposed project's impacts. As a result, the impacts will be less than significant.

#### Schools

Due to the nature of the proposed project, no direct enrollment impacts regarding school services will occur. The proposed project will not directly increase demand for school services. In addition, the project developer will be required to pay all required school development fees at the time of Building Permit

<sup>87</sup> City of Santa Fe Springs. Police Services. https://www.santafesprings.org/cityhall/police\_services/default.asp

issuance. As a result, the impacts will be less than significant.

#### Parks

The proposed project does not involve recreational facilities or the construction or expansion of recreational facilities. In addition, the proposed project would not result in any residential development that would potentially significantly increase the demand for recreational facilities and services. There are no park facilities that would be physically impacted by the proposed project. No parks are located adjacent to the proposed project site with the closest park being Little Lake Park located 0.44 miles to the west. *As a result, the impacts will be less than significant.* 

#### Other Governmental Services

No new governmental services will be needed, and the proposed project is not expected to have any impact on existing governmental services. The proposed project will not directly increase demand for governmental services. As a result, the impact would be less than significant.

#### **CUMULATIVE IMPACTS**

The future development contemplated as part of the proposed project's implementation will not result in a significant incremental increase in the demand for public services. As a result, no cumulative impacts are anticipated.

#### **MITIGATION MEASURES**

The analysis of potential public service impacts indicated that no impacts would result from the proposed project's approval and implementation so no mitigation measures are required.

# 3.16 RECREATION

| Environmental Issue Areas Examined                                                                                                                                                                                    | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? |                                      |                                                          |                                    | ×            |
| <b>B.</b> Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?                        |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? • No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

The closest park to the project site is Little Lake Park located 0.45 miles to the southwest. Due to the nature of the proposed project, no significant increase in the usage of city parks and recreational facilities is anticipated to occur. The proposed development would not result in any direct recreational services impacts related to potential population growth since this new employment may be drawn from the local labor pool. In addition, the potential employment growth is very minimal and is well within SCAG's employment growth projections for the City of Santa Fe Springs up to 2045. *As a result, there will be no impacts*.

<sup>88</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.



# EXHIBIT 3-9 RECREATION MAP

**Source: Parks and Recreation Department** 

**B.** Would the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment? ● No Impact.

The proposed project does not involve recreational facilities or the construction or expansion of recreational facilities. In addition, the proposed project would not result in any development that would potentially significantly increase the demand for recreational facilities and services. *As a result, there will be no impact*.

#### **CUMULATIVE IMPACTS**

The analysis determined that the proposed project would not result in any significant impact on recreational facilities and services. As a result, no cumulative impacts on recreational facilities would result from the proposed project's implementation.

#### **MITIGATION MEASURES**

The analysis of potential impacts related to parks and recreation indicated that no adverse no impacts would result from the proposed project's approval and implementation. As a result, no mitigation measures are required.

### 3.17 TRANSPORTATION AND CIRCULATION

| Environmental Issue Areas Examined                                                                                                                                                 | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?   |                                      |                                                          | *                                  |              |
| <b>B.</b> Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?                                                                     |                                      |                                                          | ×                                  |              |
| C. Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? |                                      |                                                          |                                    | ×            |
| <b>D.</b> Would the project result in inadequate emergency access?                                                                                                                 |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities? • Less Than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial.

Urban Crossroads, Inc. conducted a VMT Screening attached in Appendix C. Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Traffic volumes expected to be generated by the proposed project were estimated for the weekday commuter AM and PM peak hours, as well as over a 24-hour daily period, using trip generation rates provided in the Institute of Transportation Engineers' (ITE) Trip Generation Manual. The ITE document contains trip rates for a variety of land uses which have been derived based on traffic counts conducted at

<sup>&</sup>lt;sup>89</sup> HPA Architecture, Inc. *GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1.* July 24, 2022. SECTION 3 ● ENVIRONMENTAL ANALYSIS

existing sites throughout California and the United States. The trip generation rates and forecast of the vehicular trips anticipated to be generated by the proposed project are presented in Table 3-8.

Table 3-8
Project Trip Generation

| - <b>J</b>                   |             |      |               |       |          |       |              |     |        |
|------------------------------|-------------|------|---------------|-------|----------|-------|--------------|-----|--------|
| Description/Variable         | ITE         | Unit | Average Daily | AM Po | eak Hour |       | PM Peak Hour |     | k Hour |
|                              | Code        | Onit | Trips         | In    | Out      | Total | In           | Out | Total  |
| Warehousing                  |             |      |               |       |          |       |              |     |        |
| Passenger Cars               | 150         | TSF  | 28            | 3     | 1        | 4     | 1            | 3   | 4      |
| Trucks                       | 150         | TSF  | 16            | 1     | 1        | 2     | 1            | 1   | 2      |
| <b>High Cube Cold Storag</b> | e Warehouse | •    |               |       |          |       |              |     |        |
| Passenger Cars               | 157         | TSF  | 104           | 6     | 0        | 6     | 1            | 5   | 6      |
| Trucks                       | 157         | TSF  | 56            | 1     | 2        | 3     | 1            | 1   | 2      |

**Project trips – Passenger Car Equivalents (PCE)** 

| Description/ variable            | ITE Code | Unit | Daily | AM Peak Hour |     |       | PM Peak Hour |     |       |
|----------------------------------|----------|------|-------|--------------|-----|-------|--------------|-----|-------|
|                                  |          |      |       | In           | Out | Total | In           | Out | Total |
| Warehousing                      |          |      |       |              |     |       |              |     |       |
| Passenger Cars                   | 150      | TSF  | 28    | 3            | 1   | 4     | 1            | 3   | 4     |
| Trucks                           | 150      | TSF  | 30    | 1            | 1   | 2     | 1            | 1   | 2     |
| High Cube Cold Storage Warehouse |          |      |       |              |     |       |              |     |       |
| Passenger Cars                   | 157      | TSF  | 104   | 6            | 0   | 6     | 1            | 5   | 6     |
| Trucks                           | 157      | TSF  | 112   | 1            | 3   | 4     | 2            | 2   | 4     |

PCE = Passenger Car Equivalent KSF = 1,000 Square Feet

Traffic volumes expected to be generated by the proposed project were based upon rates per thousand square feet of gross floor area. ITE Land Use Code 140 (Manufacturing), ITE Land Use Code 150 (Warehousing), and ITE Land Use Code 157 (High Cube Cold Storage Warehouse) trip generation average rates were used to forecast the traffic volumes expected to be generated by the proposed project.

The proposed project will require two to three employees will be onsite during each shift. As summarized in Table 3-8, the proposed project is expected to generate 15 vehicle trips during the weekday AM peak hour. During the weekday PM peak hour, the proposed project is expected to generate 14 vehicle trips. Over a 24-hour period, the proposed project is forecast to generate 204 daily trip ends during a typical weekday. These trips include both employees and truck drivers that will deliver chemical supplies on a once-a-month basis. The traffic volumes would be far less than the potential traffic volumes for other types of commercial and industrial land uses and development that would otherwise be permitted under the City's Zoning Ordinance for the property. As a result, the potential impacts are anticipated to be less than significant.

<sup>1</sup> Driveway Count Data Collected 10840 Norwalk Blvd, Santa Fe Springs, California

# INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJECT 10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS

**B.** Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?
• Less Than Significant Impact.

It is important to note that the project is an "infill" development, which is seen as an important strategy in combating the release of GHG emissions. Infill development provides a regional benefit in terms of a reduction in Vehicle Miles Traveled (VMT) since the project is consistent with the regional and State sustainable growth objectives identified in the State's Strategic Growth Council (SGC).90 Infill development reduces VMT by recycling existing undeveloped or underutilized properties located in established urban areas. When development is located in a more rural setting, such as further east in the desert areas, employees, patrons, visitors, and residents may have to travel farther since rural development is often located a significant distance from employment, entertainment, and population centers. Consequently, this distance is reduced when development is located in urban areas since employment, entertainment, and population centers tend to be set in more established communities.

The State of California Governor's Office of Planning and Research (OPR) issued proposed updates to the CEQA guidelines in November 2017 and an accompanying technical advisory guidance was finalized in December 2018 (OPR Technical Advisory) that amends the Appendix G question for transportation impacts to delete reference to vehicle delay and level of service and instead refer to Section 15064.3, subdivision (b)(1) of the CEQA Guidelines asking if the project will result in a substantial increase in Vehicles Miles Traveled (VMT). For the purpose of environmental review under CEQA, the City of Santa Fe Springs has established criteria for transportation impacts based on Vehicles Miles Traveled (VMT) for land use projects and plans which is generally consistent with the recommendations provided by OPR in the Technical Advisory. Public agencies traditionally have set certain thresholds to determine whether a project requires detailed transportation analysis or if it could be assumed to have less than significant environmental impacts without additional study. Consistent with the OPR's Technical Advisory, the City of Santa Fe Springs has determined the following screening criteria for certain land development projects that may be presumed to result in a less than significant VMT impact:

- Projects that result in a net increase of 110 or less daily vehicle trips;
- Projects located in a High-Quality Transit Area (i.e., within half-mile distance of an existing rail transit station or located within half-mile of existing bus service with a frequency of service interval of 15 minutes or less during morning and evening peak hours);
- Project is locally serving retail (less than 50,000 square feet), including gas stations, banks, restaurants, shopping center;
- Local-serving community colleges, K-12 schools, local parks, daycare centers, etc.;
- Residential projects with 100 percent affordable housing;
- Community institutions project (public library, fire station, local government);
- Local-serving hotels (e.g., non-destination hotels);
- Local-serving assembly uses (places of worship, community organizations);
- Public parking garages and parking lots;
- Assisted living or senior housing projects; and,
- Affordable, supportive, or transitional housing projects.

# INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJECT 10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS

Proposed projects are not required to satisfy all of the screening criteria in order to screen out of further VMT analysis; satisfaction of at least one criterion is sufficient for screening purposes. Therefore, the proposed project satisfies the criteria to be considered a local serving use and is screened out from further VMT analysis as it is presumed to cause less than significant transportation impacts. No further VMT analysis is required for the proposed project. *Therefore*, the potential impacts are considered to be less than significant.

**C.** Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? ● No Impact.

Primary vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard. An emergency access will connect to Florence Avenue. A maximum of 16 vehicles (passenger car equivalent) will enter the site during the peak hour through the driveways on Florence Avenue from the north by making a right-turn movement. A maximum of 16 vehicles (passenger car equivalent) will enter the site during the peak hour through the driveways on Norwalk Boulevard from the west by making a right-turn movement. This low volume of traffic is not expected to cause any significant on-street delays or long queues. Adequate sight distance is available from the driveways along both directions on Norwalk Boulevard and Florence Avenue. As a result, no impacts will occur.

#### **D.** Would the project result in inadequate emergency access? ● No Impact.

The proposed project will not affect emergency access to the project site or to any adjacent parcels since no vehicular access is currently provided. The adjacent properties currently maintain their own fire access. At no time during construction or operation will any local streets, including Florence Avenue and Norwalk Boulevard, be closed to traffic. *As a result, no impacts will result.* 

#### **CUMULATIVE IMPACTS**

The future development contemplated as part of the proposed project's implementation will not result in a significant increase in traffic generation in the area given the geographic separation of the four cumulative projects from the proposed project. As a result, no cumulative impacts are anticipated.

#### **MITIGATION MEASURES**

The analysis of potential impacts related to traffic and circulation indicated that no significant impacts would result from the proposed project's approval and implementation. As a result, no mitigation measures are required.

# 3.18 TRIBAL CULTURAL RESOURCES

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| A. Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?                                                                                                                                                                                                                                     |                                      | ×                                                        |                                    |              |
| <b>B.</b> Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1? In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe. |                                      |                                                          | ×                                  |              |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)? ● Less Than Significant Impact with Mitigation.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will

be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial. A Tribal Resource is defined in the State of California Public Resources Code Section 21074 and includes the following:

- Sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe that are either of the following: included or determined to be eligible for inclusion in the California Register of Historical Resources or included in a local register of historical resources as defined in subdivision (k) of Section 5020.1.
- A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Section 5024.1. In applying the criteria set forth in subdivision (c) of Section 5024.1 for the purposes of this paragraph, the lead agency shall consider the significance of the resource to a California Native American tribe.
- A cultural landscape that meets the criteria of subdivision (a) is a tribal cultural resource to the extent that the landscape is geographically defined in terms of the size and scope of the landscape.
- A historical resource described in Section 21084.1, a unique archaeological resource as defined in subdivision (g) of Section 21083.2, or a "non-unique archaeological resource" as defined in subdivision (h) of Section 21083.2 may also be a tribal cultural resource if it conforms with the criteria of subdivision (a).

The project site is located within the cultural area that was formerly occupied by the Gabrieleño-Tongva Nation. The project site is located within an urbanized area of the City that has been disturbed due to past development and there is a limited likelihood that artifacts will be encountered during the site's development. In addition, the project area is not located within an area that is typically associated with habitation sites, foraging areas, ceremonial sites, or burials. The following mitigation is required due to the potential for disturbance of tribal cultural resources:

• The project Applicant will be required to obtain the services of a qualified Native American Monitor(s) during construction-related ground disturbance activities. Ground disturbance is defined by the Tribal Representatives from the Gabrieleño-Tongva Nation as activities that include, but are not limited to, pavement removal, pot-holing or auguring, boring, grading, excavation, and trenching, within the project area. The monitor(s) must be approved by the tribal representatives and will be present on-site during the construction phases that involve any ground-disturbing activities.

The above mitigation will reduce the impact to levels that are less than significant.

**B.** Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1? In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe. • Less Than Significant Impact.

As previously mentioned, the project site is located within the cultural area that was formally occupied by

<sup>91</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

# INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJECT 10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS

the Gabrieleño-Tongva Nation and it was determined that the site may be situated in an area of high archaeological significance. However, the project site is located within an urbanized area of the city that has been disturbed due to past development and there is a limited likelihood that artifacts will be encountered. The grading and excavation will involve the installation of the new building footings and utility connections. In addition, the project area is not located within an area that is typically associated with habitation sites, foraging areas, ceremonial sites, or burials. *Nevertheless, the previous mitigation provided in Section 3.18.2. above, the tribal cultural impacts will be reduced to levels that are considered to be less than significant.* 

#### **CUMULATIVE IMPACTS**

The analysis determined that the potential impacts related to tribal cultural resources are considered to be less than significant with mitigation. However, the potential impacts are considered to be site specific. As a result, no significant cumulative impacts will occur as part of the implementation of the proposed project.

#### **MITIGATION MEASURES**

The analysis of tribal cultural resources indicated that no significant impacts would result with the implementation of the following mitigation measure

Mitigation Measure No. 5 (Tribal/Cultural Resources). The project Applicant will be required to obtain the services of a qualified Native American Monitor(s) during construction-related ground disturbance activities. Ground disturbance is defined by the Tribal Representatives from the Gabrieleño-Tongva Nation as activities that include, but are not limited to, pavement removal, pot-holing or auguring, boring, grading, excavation, and trenching, within the project area. The monitor(s) must be approved by the tribal representatives and will be present on-site during the construction phases that involve any ground-disturbing activities.

# 3.19 UTILITIES AND SERVICE SYSTEMS

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> Would the project require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects? |                                      |                                                          | ×                                  |              |
| <b>B.</b> Would the project have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?                                                                                                                            |                                      |                                                          | ×                                  |              |
| C. Would the project result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?                                                           |                                      |                                                          | ×                                  |              |
| <b>D.</b> Would the project generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?                                                                                              |                                      |                                                          | ×                                  |              |
| E. Would the project comply with federal, state, and local management and reduction statutes and regulations related to solid waste?                                                                                                                                                                          |                                      |                                                          |                                    | ×            |

#### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** Would the project require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects? • Less than Significant Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will

be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial. 92

The City of Santa Fe Springs is located within the service area of the Sanitation District 2 of Los Angeles County. The nearest wastewater treatment plant to Santa Fe Springs is the Los Coyotes Water Reclamation Plant (WRP) located in Cerritos. The Los Coyotes WRP is located at 16515 Piuma Avenue in the City of Cerritos and occupies 34 acres at the northwest junction of the San Gabriel River (I-605) and the Artesia (SR-91) Freeways. The plant was placed in operation on May 25, 1950, and initially had a capacity of 12.5 million gallons per day and consisted of primary treatment and secondary treatment with activated sludge.

The Los Coyotes WRP provides primary, secondary, and tertiary treatment for 37.5 million gallons of wastewater per day. The plant serves a population of approximately 370,000 people. Over 5 million gallons per day of the reclaimed water is reused at over 270 reuse sites. Reuse includes landscape irrigation of schools, golf courses, parks, nurseries, and greenbelts; and industrial use at local companies for carpet dying and concrete mixing. The remainder of the effluent is discharged to the San Gabriel River. Treated wastewater is disinfected with chlorine and conveyed to the Pacific Ocean. The reclamation projects utilize pump stations from the two largest Sanitation Districts' Water Reclamation plants includes the San Jose Creek WRP in Whittier and Los Coyotes WRP in Cerritos. The Los Coyotes WRP has a design capacity of 37.5 million gallons per day (mgd) and currently processes an average flow of 20.36 mgd. In addition, the new plumbing fixtures that will be installed will consist of water conserving fixtures as is required by the current City Code requirements. No new or expanded sewage and/or water treatment facilities will be required to accommodate the proposed project. As a result, the impacts will be less than significant.

**B.** Would the project have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years? • Less Than Significant Impact.

As previously mentioned, water in the local area is supplied by the Santa Fe Springs Water Utility Authority (SFSWUA). The future wastewater generation will be within the treatment capacity of the Los Coyotes and Long Beach WRP. Water in the local area is supplied by the SFSWUA. Water is derived from two sources: groundwater and surface water. The SFSWUA pumps groundwater from the local well and disinfects this water with chlorine before distributing it to customers. SFSWUA also obtains treated and disinfected groundwater through the City of Whittier from eight active deep wells located in the Whittier Narrows area. The proposed project is projected to consume approximately 4,498 gallons of water on a daily basis.

According to the City's 2020 Urban Water Management Plan, the City of Santa Fe Springs Water System has approximately 14,830 service connections servicing an area of approximately 8.9 square miles. Over the past five years, the city has not produced groundwater from the central basin, during a five consecutive year drought (2011 to 2016) the city met between 0 and 20 percent of its total demands with supplies from the central basin. However, the City purchased treated central basin water, meeting between 31 and 44 percent of its total demands with purchased groundwater supplies from the central basin. In addition to the proposed project, the city has a diverse water supply portfolio where water supplies may be re-apportioned during a five consecutive year drought to meet the city's water demands.<sup>93</sup> As indicated in Table 3-9, the

<sup>92</sup> HPA Architecture, Inc. GLC Santa Fe Springs Building Number 4. 1-DAB-A2.1. July 24, 2022.

<sup>93</sup> City of Santa Fe Springs, 2020 Urban Water Management Plan. Department of Public Works, Utilities Services Division. July 2021.

proposed project is projected to consume approximately 4,497.7 gallons of water on a daily basis. The project will connect to an existing 15 inch-water line located along Norwalk Boulevard. The existing water supply facilities and infrastructure will be able accommodate this additional demand. In addition, the tilt-up concrete building will be equipped with water efficient fixtures and drought tolerant plants will be planted throughout the property. As a result, the impacts will be less than significant.

Table 3-9 Water Consumption (gals/day)

| Use               | Unit           | Factor               | Consumption      |
|-------------------|----------------|----------------------|------------------|
| Warehouse         | 99,929 sq. ft. | 0.05 gals/day/sq. ft | 4,497.7 gals/day |
| Total Consumption |                |                      | 4,497.7 gals/day |

Source: Blodgett Baylosis Environmental Planning.

**C.** Would the project result in a determination by the wastewater treatment provider that serves or may serve the project that it has inadequate capacity to serve the project's projected demand in addition to the provider's existing commitments? • Less Than Significant Impact.

The County of Los Angeles, acting as the Los Angeles County Flood Control District (LACFCD), has the regional, county-wide flood control responsibility. LACFCD responsibilities include planning for developing and maintaining flood control facilities of regional significance which serve large drainage areas. The proposed project will be required to comply with all pertinent Federal Clean Water Act requirements. The site proposes new internal roadways and hardscape areas that will be subject to the National Pollutant Discharge Elimination System (NPDES) permit from the Regional Water Quality Control Board. The project will also be required to comply with the City's storm water management guidelines. *As a result, the potential impacts will be less than significant.*94

The project will connect to an existing 15-inch sewer line located along Norwalk Boulevard. The existing sewer lines have sufficient capacity to accommodate the projected flows and adequate sewage collection and treatment are currently available. *As a result, the impacts will be less than significant.* 

**D.** Would the project generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?  $\bullet$  Less Than Significant Impact.

The Sanitation Districts operate a comprehensive solid waste management system serving the needs of a large portion of Los Angeles County. Trash collection is provided by CR&R Inc. for disposal into area landfills. Waste is then transferred to either the Mesquite Regional Landfill in Imperial County or to the nearby materials recovery facilities (MRFs). The Los Angeles County Sanitation District selected the Mesquite Regional Landfill in Imperial County as the new target destination for the County's waste (as an alternative to the closed Puente Hills landfill). The Mesquite Regional Landfill in Imperial County has a 100-year capacity at 8,000 tons per day. The Puente Hills Transfer Station and MRF is able to accept 4,440 tons per day of solid waste. Table 3-10 indicates the solid waste generation for the proposed project which would be 892.5 pounds per day.

Section 3  $\bullet$  Environmental Analysis

<sup>94</sup> California Health and Safety Code. Division 5. Sanitation. Part 3. Chapter 3. County Sanitation Districts Article 1 https://leginfo.legislature.ca.gov/faces/codes\_displayText.xhtml?lawCode=HSC&division=5.&title=&part=3.&chapter=3.&article=1

### Table 3-10 Solid Waste Generation (pounds/day)

| Use              | Unit           | Factor                      | Generation     |
|------------------|----------------|-----------------------------|----------------|
| Warehouse        | 99,929 sq. ft. | 8.93 lbs./day/1,000 sq. ft. | 892.5 lbs./day |
| Total Generation |                |                             | 892.5 lbs./day |

Source: Blodgett Baylosis Environmental Planning.

Given the remaining capacity at area landfills, the impacts will be less than significant.

E. Would the project comply with federal, state, and local statutes and regulations related to solid waste?No Impact.

The proposed project, like all other development in Los Angeles County and the City of Santa Fe Springs, will be required to adhere to City and County ordinances with respect to waste reduction and recycling. *As a result, no impacts are anticipated.* 

### **CUMULATIVE IMPACTS**

The analysis herein determined that the proposed project would not result in any significant adverse impacts on local utilities. The ability of the existing sewer lines, water lines, and other utilities to accommodate the projected demand from future related projects will require evaluation on a case-by-case basis. As a result, no cumulative impacts on utilities will occur.

#### **MITIGATION MEASURES**

The analysis of utilities impacts indicated that no significant adverse impacts would result from the proposed project's approval and implementation. As a result, no mitigation is required.

## 3.20 WILDFIRE

| Environmental Issue Areas Examined                                                                                                                                                                                                                                                                                                                                                                 | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>Impact<br>With<br>Mitigation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|--------------|
| <b>A.</b> If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project substantially impair an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                                    |                                      |                                                          |                                    | ×            |
| <b>B.</b> If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?                                                |                                      |                                                          |                                    | ×            |
| C. If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment? |                                      |                                                          |                                    | ×            |
| <b>D.</b> If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?                                                                     |                                      |                                                          |                                    | ×            |

### ANALYSIS OF ENVIRONMENTAL IMPACTS

**A.** If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project substantially impair an adopted emergency response plan or emergency evacuation plan? ● No Impact.

The proposed project involves the construction and subsequent occupancy of a new 99,929 square foot industrial building on a 219,234 square foot (5.03 acre) lot. The proposed project's legal address is 10840 Norwalk Boulevard, Santa Fe Springs, California, 90670. The corresponding Assessor Parcel Numbers (APNs) include 8009-022-046 and 8009-022-039. The new building will replace an existing oil well operating and maintenance business which includes a 12,232 square foot office building and a total of 29,680 square feet of maintenance/operations buildings. The proposed partially refrigerated building will include 3,000 square feet of office, 5,200 square feet of upper-level mezzanine, and 91,369 square feet of warehousing space for a total of 99,929 square feet of floor area. The new structural improvements will occupy 45.6% of the lot. Vehicular access to the site will be provided by a two-way driveway that provides access to the east side of Norwalk Boulevard and a second driveway connection with the south side of Florence Avenue. A total of 149 parking stalls will be provided including 95 standard stalls, 15 parallel parking spaces, 23 compact stalls, 5 ADA stalls, and 11 EV/Clean Air Vehicle stalls. A total of 14 dock-high loading positions will be provided along the new building's east elevation. A total of 8,215 square feet will

be dedicated to landscaped areas. The majority of the project site is zoned as Heavy Industrial (M2) though the western portion of the site along Norwalk Boulevard is zoned as Commercial. 95

The project site and surrounding areas is located in an urbanized area. The proposed project would not result in a closure or alteration of any existing emergency response and evacuation routes that would be important in the event of a wildfire. As a result, no impacts will occur.

**B.** If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire? • No Impact.

The project site and surrounding areas are relatively flat land. Furthermore, the project site and the adjacent properties are urbanized and there are no native or natural vegetation found within the project area. The project site is not located in any fire hazard severity zone (refer to Exhibit 3-10). The proposed project will not be exposed to certain criteria pollutant emissions generated by wildland fires given the project site's distance, more than 3 miles, to the nearest fire hazard severity zones. The potential impacts would not be exclusive to the project site since criteria pollutant emissions from wildland fires may affect the entire city as well as the surrounding cities and unincorporated county areas. *As a result, no impacts will occur*.

**C.** If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment? • No Impact.

The project site is not located in any fire hazard severity zone. There is no risk of wildlife within the project site or surrounding area given the project site's distance from any area that may be subject to a wildfire event. The project will be constructed in compliance with the current Building Code and the Fire Department's recommendations and will not exacerbate wildfire risks. *As a result, no impacts will occur.* 

**D.** If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes? ● No Impact.

The project site is not located in any fire hazard severity zone. Therefore, the project will not expose future employees to flooding or landslides facilitated by runoff flowing down barren and charred slopes. *As a result, no impacts will occur.* 

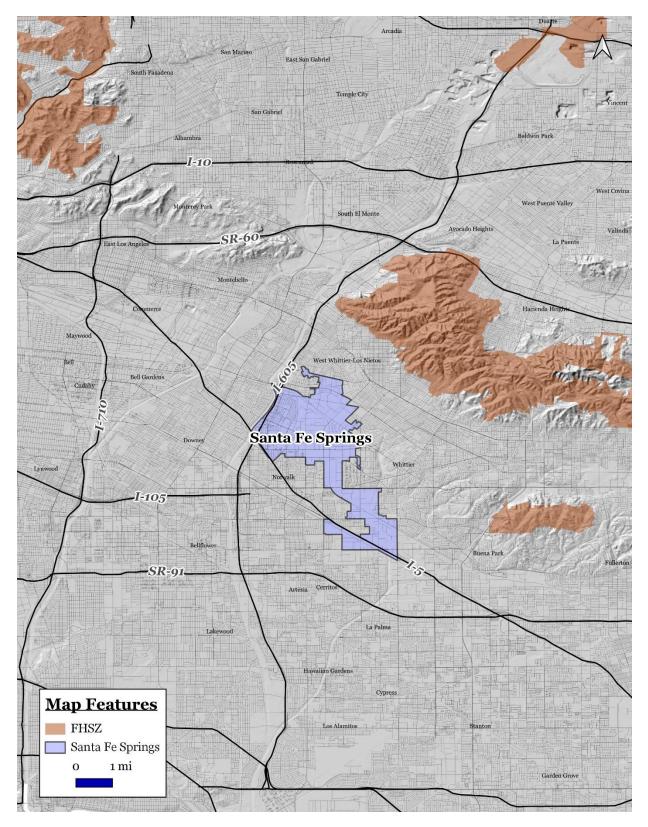



EXHIBIT 3-10
FIRE HAZARD SAFETY ZONE

**Source: CALFire** 

### **CUMULATIVE IMPACTS**

The analysis herein determined that the proposed project would not result in any significant adverse impacts with respect to potential wildfire. As a result, no cumulative impacts related to wildfire will occur.

### **MITIGATION MEASURES**

The analysis of utilities impacts indicated that no significant adverse impacts with respect to wildfire risk would result from the proposed project's approval and implementation. As a result, no mitigation is required.

## 3.21 MANDATORY FINDINGS OF SIGNIFICANCE

The following findings can be made regarding the Mandatory Findings of Significance set forth in Section 15065 of the CEQA Guidelines based on the results of this environmental assessment:

- The proposed project will not have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of an endangered, rare or threatened species or eliminate important examples of the major periods of California history or prehistory.
- The proposed project *will not* have impacts that are individually limited, but cumulatively considerable.
- The proposed project *will not* have environmental effects which will cause substantially adverse effects on human beings, either directly or indirectly.



## **SECTION 4 - CONCLUSIONS**

## 4.1 FINDINGS

The Initial Study determined that the proposed project is not expected to have any significant adverse environmental impacts. Pursuant to Section 21081(a) of the Public Resources Code, findings must be adopted by the decision-maker coincidental to the approval of a Mitigated Negative Declaration, which relates to the Mitigation Monitoring Program. These findings shall be incorporated as part of the decision-maker's findings of fact, in response to AB-3180 and in compliance with the requirements of the Public Resources Code. In accordance with the requirements of Section 21081(a) and 21081.6 of the Public Resources Code, the City of Santa Fe Springs can make the following findings:

- A mitigation reporting or monitoring program will be required; and,
- An accountable enforcement agency or monitoring agency shall be identified for the mitigation measures adopted as part of the decision-maker's final determination.

Several mitigation measures have been recommended as a means to reduce or eliminate potential adverse environmental impacts to insignificant levels. AB-3180 requires that a monitoring and reporting program be adopted for the recommended mitigation measures.

## 4.2 MITIGATION MEASURES

The following mitigation is required due to the potential for disturbance of aesthetic resources:

Mitigation Measure No. 1 (Aesthetic Impacts). The contractors must ensure that appropriate light shielding is provided for the lighting equipment in the parking area, buildings, and security to limit glare and light trespass. An interior parking and street lighting plan and an exterior photometric plan indicating the location, size, and type of existing and proposed lighting shall also be prepared by the Applicant. The plan for the lighting must be submitted to the Planning Department, Police Services Department, and the Chief Building Official for review and approval prior to the issuance of any building permits.

The following mitigation is required due to the potential for disturbance of archaeological resources:

Mitigation Measure No. 2 (Cultural Resources). The project Applicant will be required to obtain the services of a qualified Native American Monitor(s) during construction-related ground disturbance activities. Ground disturbance is defined by the Tribal Representatives from the Gabrieleño-Tongva Nation as activities that include, but are not limited to, pavement removal, potholing, or auguring, boring, grading, excavation, and trenching, within the project area. The monitor(s) must be approved by the tribal representatives and will be present on-site during the construction phases that involve any ground-disturbing activities.

The following mitigation measure is required which will further reduce construction noise:

Mitigation Measure No. 4 (Noise). The Applicant shall notify the nearby residents within 1,200 feet of the project site along Lakeland Road as to the times and duration of construction activities at least 10 days before the commencement of construction activities. In addition to the

Section 4 

Conclusions

Page 103

notification of the individual residences, signage must be placed on the construction security fences that would be located along the project site. The individual signs must clearly identify a contact person (and the phone number) that residents may call to complain about noise related to construction.

The following mitigation measures are required due to the potential for disturbance of tribal cultural resources:

Mitigation Measure No. 5 (Tribal Cultural Resources). The project Applicant will be required to obtain the services of a qualified Native American Monitor(s) during construction-related ground disturbance activities. Ground disturbance is defined by the Tribal Representatives from the Gabrieleño-Tongva Nation as activities that include, but are not limited to, pavement removal, potholing or auguring, boring, grading, excavation, and trenching, within the project area. The monitor(s) must be approved by the tribal representatives and will be present on-site during the construction phases that involve any ground-disturbing activities.

Section 4 

Conclusions

Page 104

## **SECTION 5 - REFERENCES**

## **5.1 PREPARERS**

### **Blodgett Baylosis Environmental Planning**

2211 S. Hacienda Boulevard, Suite 107 Hacienda Heights, California A 91745

Karla Nayakarathne, Project Manager Marc Blodgett, Project Principal Genesis Loyda, Administrator Alice Ye, Business Developer

## **5.2 REFERENCES**

References are noted using footnotes.



Section 5 ● References

Page 105

| INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJECT<br>10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS |
|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
| THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.                                                                                                 |
| THIS PAGE HAS DEEN INTENTIONALLI LEFT BLANK.                                                                                                 |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |

# **APPENDICES**

APPENDIX A – AIR QUALITY WORKSHEETS
APPENDIX B – UTILITIES & ENERGY WORKSHEETS
APPENDIX C – TRAFFIC STUDY

| INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PRO 10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS | OJECT |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
| THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.                                                                                          |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |
|                                                                                                                                       |       |

| INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION • GOODMAN SANTA FE SPRINGS SPE LLC PROJE | СТ |
|-------------------------------------------------------------------------------------------|----|
| 10840 NORWALK BLVD • CITY OF SANTA FE SPRINGS                                             |    |

APPENDIX A - AIR QUALITY WORKSHEETS

CalEEMod Version: CalEEMod.2020.4.0

Page 1 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 10840 Norwalk Blvd

South Coast Air Basin, Summer

### 1.0 Project Characteristics

### 1.1 Land Usage

| Land Uses                     | Size   | Metric   | Lot Acreage | Floor Surface Area | Population |  |
|-------------------------------|--------|----------|-------------|--------------------|------------|--|
| Unrefrigerated Warehouse-Rail | 99.93  | 1000sqft | 2.29        | 99,929.00          | 0          |  |
| Parking Lot                   | 149.00 | Space    | 1.34        | 58,000.00          | 0          |  |

#### 1.2 Other Project Characteristics

 Urbanization
 Urban
 Wind Speed (m/s)
 2.2
 Precipitation Freq (Days)
 31

 Climate Zone
 9
 Operational Year
 2024

Utility Company Southern California Edison

 
 CO2 Intensity (Ib/MWhr)
 390.98 (Ib/MWhr)
 CH4 Intensity (Ib/MWhr)
 0.033 (Ib/MWhr)
 N20 Intensity (Ib/MWhr)
 0.004

#### 1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - .

Construction Phase - .

Grading - 5.03 acre site

Demolition -

Trips and VMT - .

Area Mitigation -

**Energy Mitigation -**

| Table Name           | Column Name | Default Value | New Value |
|----------------------|-------------|---------------|-----------|
| tblConstructionPhase | NumDays     | 18.00         | 45.00     |

CalEEMod Version: CalEEMod.2020.4.0 Page 2 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblConstructionPhase | NumDays           | 230.00    | 300.00    |
|----------------------|-------------------|-----------|-----------|
| tblConstructionPhase | NumDays           | 20.00     | 30.00     |
| tblConstructionPhase | NumDays           | 8.00      | 14.00     |
| tblConstructionPhase | NumDays           | 18.00     | 45.00     |
| tblConstructionPhase | NumDays           | 5.00      | 14.00     |
| tblConstructionPhase | PhaseEndDate      | 2/22/2024 | 4/1/2024  |
| tblConstructionPhase | PhaseEndDate      | 1/3/2024  | 4/10/2024 |
| tblConstructionPhase | PhaseEndDate      | 1/27/2023 | 2/10/2023 |
| tblConstructionPhase | PhaseEndDate      | 2/15/2023 | 2/23/2023 |
| tblConstructionPhase | PhaseEndDate      | 1/29/2024 | 3/6/2024  |
| tblConstructionPhase | PhaseEndDate      | 2/3/2023  | 2/16/2023 |
| tblGrading           | AcresOfGrading    | 14.00     | 5.03      |
| tblGrading           | AcresOfGrading    | 21.00     | 5.03      |
| tblLandUse           | LandUseSquareFeet | 59,600.00 | 58,000.00 |
| tblTripsAndVMT       | HaulingTripNumber | 478.00    | 40.00     |

### 2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 3 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 2.1 Overall Construction (Maximum Daily Emission)

**Unmitigated Construction** 

|         | ROG     | NOx     | со      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Year    | lb/day  |         |         |        |                  |                 |               |                   |                  | lb/day         |          |                 |                 |        |        |                 |
| 2023    | 6.7940  | 67.2108 | 54.3578 | 0.1120 | 28.8555          | 3.0427          | 31.8981       | 13.9935           | 2.8095           | 16.8031        | 0.0000   | 10,865.93<br>50 | 10,865.93<br>50 | 3.1877 | 0.0964 | 10,952.85<br>91 |
| 2024    | 23.8751 | 24.0795 | 33.7705 | 0.0629 | 1.2730           | 1.0841          | 2.3572        | 0.3414            | 1.0168           | 1.3583         | 0.0000   | 6,096.342<br>1  | 6,096.342<br>1  | 1.2279 | 0.0940 | 6,155.039<br>5  |
| Maximum | 23.8751 | 67.2108 | 54.3578 | 0.1120 | 28.8555          | 3.0427          | 31.8981       | 13.9935           | 2.8095           | 16.8031        | 0.0000   | 10,865.93<br>50 | 10,865.93<br>50 | 3.1877 | 0.0964 | 10,952.85<br>91 |

### **Mitigated Construction**

|         | ROG     | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Year    | lb/day  |         |         |        |                  |                 |               |                   |                  | lb/day         |          |                 |                 |        |        |                 |
| 2023    | 6.7940  | 67.2108 | 54.3578 | 0.1120 | 28.8555          | 3.0427          | 31.8981       | 13.9935           | 2.8095           | 16.8031        | 0.0000   | 10,865.93<br>50 | 10,865.93<br>50 | 3.1877 | 0.0964 | 10,952.85<br>91 |
| 2024    | 23.8751 | 24.0795 | 33.7705 | 0.0629 | 1.2730           | 1.0841          | 2.3572        | 0.3414            | 1.0168           | 1.3583         | 0.0000   | 6,096.342<br>1  | 6,096.342<br>1  | 1.2279 | 0.0940 | 6,155.039<br>5  |
| Maximum | 23.8751 | 67.2108 | 54.3578 | 0.1120 | 28.8555          | 3.0427          | 31.8981       | 13.9935           | 2.8095           | 16.8031        | 0.0000   | 10,865.93<br>50 | 10,865.93<br>50 | 3.1877 | 0.0964 | 10,952.85<br>91 |

CalEEMod Version: CalEEMod.2020.4.0

Page 4 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                      | ROG  | NOx  | со   | S02  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

CalEEMod Version: CalEEMod.2020.4.0 Page 5 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 2.2 Overall Operational Unmitigated Operational

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O             | CO2e           |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|----------------|----------------|-----------------|-----------------|----------------|
| Category |                 |                 |        |                 | lb/              | day             |                 |                   |                  |                 |          |                | lb/d           | day             |                 |                |
| Area     | 2.2597          | 2.3000e-<br>004 | 0.0254 | 0.0000          |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545         | 0.0545         | 1.4000e-<br>004 |                 | 0.0580         |
| Energy   | 2.5400e-<br>003 | 0.0231          | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999        | 27.6999        | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645        |
| Mobile   | 0.5789          | 0.6544          | 6.3225 | 0.0149          | 1.5700           | 0.0103          | 1.5802          | 0.4184            | 9.5600e-<br>003  | 0.4279          |          | 1,514.571<br>9 | 1,514.571<br>9 | 0.0882          | 0.0592          | 1,534.427<br>4 |
| Total    | 2.8412          | 0.6777          | 6.3672 | 0.0150          | 1.5700           | 0.0121          | 1.5821          | 0.4184            | 0.0114           | 0.4298          |          | 1,542.326<br>2 | 1,542.326<br>2 | 0.0889          | 0.0597          | 1,562.349<br>9 |

### **Mitigated Operational**

|          | ROG             | NOx             | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O             | CO2e           |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|----------------|----------------|-----------------|-----------------|----------------|
| Category |                 |                 |        |                 | lb/              | day             |                 |                   |                  |                 |          |                | lb/d           | day             |                 |                |
| Area     | 2.2597          | 2.3000e-<br>004 | 0.0254 | 0.0000          |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545         | 0.0545         | 1.4000e-<br>004 |                 | 0.0580         |
| Energy   | 2.5400e-<br>003 | 0.0231          | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999        | 27.6999        | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645        |
| Mobile   | 0.5789          | 0.6544          | 6.3225 | 0.0149          | 1.5700           | 0.0103          | 1.5802          | 0.4184            | 9.5600e-<br>003  | 0.4279          |          | 1,514.571<br>9 | 1,514.571<br>9 | 0.0882          | 0.0592          | 1,534.427<br>4 |
| Total    | 2.8412          | 0.6777          | 6.3672 | 0.0150          | 1.5700           | 0.0121          | 1.5821          | 0.4184            | 0.0114           | 0.4298          |          | 1,542.326<br>2 | 1,542.326<br>2 | 0.0889          | 0.0597          | 1,562.349<br>9 |

CalEEMod Version: CalEEMod.2020.4.0

Page 6 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                      | ROG  | NOx  | со   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

### 3.0 Construction Detail

#### **Construction Phase**

| Phase<br>Number | Phase Name            | Phase Type            | Start Date | End Date  | Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|-----------------------|------------|-----------|------------------|----------|-------------------|
| 1               | Demolition            | Demolition            | 1/1/2023   | 2/10/2023 | 5                | 30       |                   |
| 2               | Site Preparation      | Site Preparation      | 1/28/2023  | 2/16/2023 | 5                | 14       |                   |
| 3               | Grading               | Grading               | 2/4/2023   | 2/23/2023 | 5                | 14       |                   |
| 4               | Building Construction | Building Construction | 2/16/2023  | 4/10/2024 | 5                | 300      |                   |
| 5               | Paving                | Paving                | 1/4/2024   | 3/6/2024  | 5                | 45       |                   |
| 6               | Architectural Coating | Architectural Coating | 1/30/2024  | 4/1/2024  | 5                | 45       |                   |

Acres of Grading (Site Preparation Phase): 5.03

Acres of Grading (Grading Phase): 5.03

Acres of Paving: 1.34

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 149,894; Non-Residential Outdoor: 49,965; Striped Parking Area: 3,480 (Architectural Coating – sqft)

#### OffRoad Equipment

| Phase Name            | Offroad Equipment Type   | Amount | Usage Hours | Horse Power | Load Factor |
|-----------------------|--------------------------|--------|-------------|-------------|-------------|
| Architectural Coating | Air Compressors          | 1      | 6.00        | 78          | 0.48        |
| Paving                | Cement and Mortar Mixers | 2      | 6.00        | 9           | 0.56        |
| Demolition            | Concrete/Industrial Saws | 1      | 8.00        | 81          | 0.73        |
| Building Construction | Cranes                   | 1      | 7.00        | 231         | 0.29        |
| Building Construction | Forklifts                | 3      | 8.00        | 89          | 0.20        |

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Building Construction | Generator Sets            | 1 | 8.00 | 84  | 0.74 |
|-----------------------|---------------------------|---|------|-----|------|
| Grading               | Graders                   | 1 | 8.00 | 187 | 0.41 |
| Demolition            | Excavators                | 3 | 8.00 | 158 | 0.38 |
| Paving                | Pavers                    | 1 | 8.00 | 130 | 0.42 |
| Paving                | Paving Equipment          | 2 | 6.00 | 132 | 0.36 |
| Paving                | Rollers                   | 2 | 6.00 | 80  | 0.38 |
| Demolition            | Rubber Tired Dozers       | 2 | 8.00 | 247 | 0.40 |
| Grading               | Rubber Tired Dozers       | 1 | 8.00 | 247 | 0.40 |
| Grading               | Excavators                | 1 | 8.00 | 158 | 0.38 |
| Building Construction | Tractors/Loaders/Backhoes | 3 | 7.00 | 97  | 0.37 |
| Site Preparation      | Rubber Tired Dozers       | 3 | 8.00 | 247 | 0.40 |
| Grading               | Tractors/Loaders/Backhoes | 3 | 8.00 | 97  | 0.37 |
| Paving                | Tractors/Loaders/Backhoes | 1 | 8.00 | 97  | 0.37 |
| Site Preparation      | Tractors/Loaders/Backhoes | 4 | 8.00 | 97  | 0.37 |
| Building Construction | Welders                   | 1 | 8.00 | 46  | 0.45 |

### Trips and VMT

| Phase Name            | Offroad Equipment<br>Count | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Worker Vehicle<br>Class | Vendor<br>Vehicle Class | Hauling<br>Vehicle Class |
|-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------|
| Demolition            | 6                          | 15.00                 | 0.00                  | 40.00                  | 14.70                 | 6.90                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Site Preparation      | 7                          | 18.00                 | 0.00                  | 0.00                   | 14.70                 | 6.90                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Grading               | 6                          | 15.00                 | 0.00                  | 0.00                   | 14.70                 | 6.90                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Building Construction | 9                          | 66.00                 | 26.00                 | 0.00                   | 14.70                 | 6.90                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Paving                | 8                          | 20.00                 | 0.00                  | 0.00                   | 14.70                 | 6.90                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Architectural Coating | 1                          | 13.00                 | 0.00                  | 0.00                   | 14.70                 | 6.90                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |

### 3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.2 Demolition - 2023 Unmitigated Construction On-Site

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 3.4452           | 0.0000          | 3.4452        | 0.5216            | 0.0000           | 0.5216         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 2.2691 | 21.4844 | 19.6434 | 0.0388 |                  | 0.9975          | 0.9975        |                   | 0.9280           | 0.9280         |          | 3,746.984<br>0 | 3,746.984<br>0 | 1.0494 |     | 3,773.218<br>3 |
| Total         | 2.2691 | 21.4844 | 19.6434 | 0.0388 | 3.4452           | 0.9975          | 4.4428        | 0.5216            | 0.9280           | 1.4496         |          | 3,746.984<br>0 | 3,746.984<br>0 | 1.0494 |     | 3,773.218<br>3 |

|          | ROG             | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N20             | CO2e     |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |                 |        |        |                 | lb/              | day             |               |                   |                  |                 |          |           | lb/c      | day             |                 |          |
| Hauling  | 2.8100e-<br>003 | 0.1641 | 0.0458 | 7.7000e-<br>004 | 0.0233           | 1.1500e-<br>003 | 0.0245        | 6.3900e-<br>003   | 1.1000e-<br>003  | 7.4900e-<br>003 |          | 84.5912   | 84.5912   | 5.1900e-<br>003 | 0.0135          | 88.7305  |
| Vendor   | 0.0000          | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0474          | 0.0320 | 0.5230 | 1.4700e-<br>003 | 0.1677           | 9.4000e-<br>004 | 0.1686        | 0.0445            | 8.7000e-<br>004  | 0.0453          |          | 148.2377  | 148.2377  | 3.6000e-<br>003 | 3.3800e-<br>003 | 149.3345 |
| Total    | 0.0503          | 0.1961 | 0.5688 | 2.2400e-<br>003 | 0.1910           | 2.0900e-<br>003 | 0.1931        | 0.0509            | 1.9700e-<br>003  | 0.0528          |          | 232.8289  | 232.8289  | 8.7900e-<br>003 | 0.0168          | 238.0650 |

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.2 Demolition - 2023 Mitigated Construction On-Site

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 3.4452           | 0.0000          | 3.4452        | 0.5216            | 0.0000           | 0.5216         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 2.2691 | 21.4844 | 19.6434 | 0.0388 |                  | 0.9975          | 0.9975        |                   | 0.9280           | 0.9280         | 0.0000   | 3,746.984<br>0 | 3,746.984<br>0 | 1.0494 |     | 3,773.218<br>3 |
| Total         | 2.2691 | 21.4844 | 19.6434 | 0.0388 | 3.4452           | 0.9975          | 4.4428        | 0.5216            | 0.9280           | 1.4496         | 0.0000   | 3,746.984<br>0 | 3,746.984<br>0 | 1.0494 |     | 3,773.218<br>3 |

|          | ROG             | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |                 |        |        |                 | lb/s             | day             |               |                   |                  |                 |          |           | lb/c      | day             |                 |          |
| Hauling  | 2.8100e-<br>003 | 0.1641 | 0.0458 | 7.7000e-<br>004 | 0.0233           | 1.1500e-<br>003 | 0.0245        | 6.3900e-<br>003   | 1.1000e-<br>003  | 7.4900e-<br>003 |          | 84.5912   | 84.5912   | 5.1900e-<br>003 | 0.0135          | 88.7305  |
| Vendor   | 0.0000          | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0474          | 0.0320 | 0.5230 | 1.4700e-<br>003 | 0.1677           | 9.4000e-<br>004 | 0.1686        | 0.0445            | 8.7000e-<br>004  | 0.0453          |          | 148.2377  | 148.2377  | 3.6000e-<br>003 | 3.3800e-<br>003 | 149.3345 |
| Total    | 0.0503          | 0.1961 | 0.5688 | 2.2400e-<br>003 | 0.1910           | 2.0900e-<br>003 | 0.1931        | 0.0509            | 1.9700e-<br>003  | 0.0528          |          | 232.8289  | 232.8289  | 8.7900e-<br>003 | 0.0168          | 238.0650 |

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.3 Site Preparation - 2023 Unmitigated Construction On-Site

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 18.4473          | 0.0000          | 18.4473       | 9.9718            | 0.0000           | 9.9718         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 2.6595 | 27.5242 | 18.2443 | 0.0381 |                  | 1.2660          | 1.2660        |                   | 1.1647           | 1.1647         |          | 3,687.308<br>1 | 3,687.308<br>1 | 1.1926 |     | 3,717.121<br>9 |
| Total         | 2.6595 | 27.5242 | 18.2443 | 0.0381 | 18.4473          | 1.2660          | 19.7133       | 9.9718            | 1.1647           | 11.1366        |          | 3,687.308<br>1 | 3,687.308<br>1 | 1.1926 |     | 3,717.121<br>9 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/s             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0569 | 0.0384 | 0.6276 | 1.7600e-<br>003 | 0.2012           | 1.1300e-<br>003 | 0.2023        | 0.0534            | 1.0400e-<br>003  | 0.0544         |          | 177.8853  | 177.8853  | 4.3200e-<br>003 | 4.0500e-<br>003 | 179.2014 |
| Total    | 0.0569 | 0.0384 | 0.6276 | 1.7600e-<br>003 | 0.2012           | 1.1300e-<br>003 | 0.2023        | 0.0534            | 1.0400e-<br>003  | 0.0544         |          | 177.8853  | 177.8853  | 4.3200e-<br>003 | 4.0500e-<br>003 | 179.2014 |

CalEEMod Version: CalEEMod.2020.4.0

Page 11 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Site Preparation - 2023 Mitigated Construction On-Site

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 18.4473          | 0.0000          | 18.4473       | 9.9718            | 0.0000           | 9.9718         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 2.6595 | 27.5242 | 18.2443 | 0.0381 |                  | 1.2660          | 1.2660        |                   | 1.1647           | 1.1647         | 0.0000   | 3,687.308<br>1 | 3,687.308<br>1 | 1.1926 |     | 3,717.121<br>9 |
| Total         | 2.6595 | 27.5242 | 18.2443 | 0.0381 | 18.4473          | 1.2660          | 19.7133       | 9.9718            | 1.1647           | 11.1366        | 0.0000   | 3,687.308<br>1 | 3,687.308<br>1 | 1.1926 |     | 3,717.121<br>9 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/s             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0569 | 0.0384 | 0.6276 | 1.7600e-<br>003 | 0.2012           | 1.1300e-<br>003 | 0.2023        | 0.0534            | 1.0400e-<br>003  | 0.0544         |          | 177.8853  | 177.8853  | 4.3200e-<br>003 | 4.0500e-<br>003 | 179.2014 |
| Total    | 0.0569 | 0.0384 | 0.6276 | 1.7600e-<br>003 | 0.2012           | 1.1300e-<br>003 | 0.2023        | 0.0534            | 1.0400e-<br>003  | 0.0544         |          | 177.8853  | 177.8853  | 4.3200e-<br>003 | 4.0500e-<br>003 | 179.2014 |

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.4 Grading - 2023 Unmitigated Construction On-Site

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/i             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 6.4031           | 0.0000          | 6.4031        | 3.3514            | 0.0000           | 3.3514         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 1.7109 | 17.9359 | 14.7507 | 0.0297 |                  | 0.7749          | 0.7749        |                   | 0.7129           | 0.7129         |          | 2,872.691<br>0 | 2,872.691<br>0 | 0.9291 |     | 2,895.918<br>2 |
| Total         | 1.7109 | 17.9359 | 14.7507 | 0.0297 | 6.4031           | 0.7749          | 7.1780        | 3.3514            | 0.7129           | 4.0643         |          | 2,872.691<br>0 | 2,872.691      | 0.9291 |     | 2,895.918<br>2 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/s             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0474 | 0.0320 | 0.5230 | 1.4700e-<br>003 | 0.1677           | 9.4000e-<br>004 | 0.1686        | 0.0445            | 8.7000e-<br>004  | 0.0453         |          | 148.2377  | 148.2377  | 3.6000e-<br>003 | 3.3800e-<br>003 | 149.3345 |
| Total    | 0.0474 | 0.0320 | 0.5230 | 1.4700e-<br>003 | 0.1677           | 9.4000e-<br>004 | 0.1686        | 0.0445            | 8.7000e-<br>004  | 0.0453         |          | 148.2377  | 148.2377  | 3.6000e-<br>003 | 3.3800e-<br>003 | 149.3345 |

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.4 Grading - 2023 Mitigated Construction On-Site

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 6.4031           | 0.0000          | 6.4031        | 3.3514            | 0.0000           | 3.3514         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 1.7109 | 17.9359 | 14.7507 | 0.0297 |                  | 0.7749          | 0.7749        |                   | 0.7129           | 0.7129         | 0.0000   | 2,872.691<br>0 | 2,872.691<br>0 | 0.9291 |     | 2,895.918<br>2 |
| Total         | 1.7109 | 17.9359 | 14.7507 | 0.0297 | 6.4031           | 0.7749          | 7.1780        | 3.3514            | 0.7129           | 4.0643         | 0.0000   | 2,872.691<br>0 | 2,872.691      | 0.9291 |     | 2,895.918<br>2 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/              | day             |               |                   |                  |                |          |           | lb/d      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0474 | 0.0320 | 0.5230 | 1.4700e-<br>003 | 0.1677           | 9.4000e-<br>004 | 0.1686        | 0.0445            | 8.7000e-<br>004  | 0.0453         |          | 148.2377  | 148.2377  | 3.6000e-<br>003 | 3.3800e-<br>003 | 149.3345 |
| Total    | 0.0474 | 0.0320 | 0.5230 | 1.4700e-<br>003 | 0.1677           | 9.4000e-<br>004 | 0.1686        | 0.0445            | 8.7000e-<br>004  | 0.0453         |          | 148.2377  | 148.2377  | 3.6000e-<br>003 | 3.3800e-<br>003 | 149.3345 |

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.5 Building Construction - 2023 Unmitigated Construction On-Site

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Off-Road | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         |          | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |
| Total    | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         |          | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | lb/i             | day             |               |                   |                  |                |          |                | lb/c           | day    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0279 | 0.9514 | 0.3652 | 4.7300e-<br>003 | 0.1665           | 5.2600e-<br>003 | 0.1717        | 0.0479            | 5.0300e-<br>003  | 0.0530         |          | 511.1084       | 511.1084       | 0.0189 | 0.0741 | 533.6719       |
| Worker   | 0.2088 | 0.1406 | 2.3013 | 6.4500e-<br>003 | 0.7377           | 4.1600e-<br>003 | 0.7419        | 0.1957            | 3.8300e-<br>003  | 0.1995         |          | 652.2460       | 652.2460       | 0.0158 | 0.0149 | 657.0718       |
| Total    | 0.2366 | 1.0921 | 2.6664 | 0.0112          | 0.9042           | 9.4200e-<br>003 | 0.9136        | 0.2436            | 8.8600e-<br>003  | 0.2524         |          | 1,163.354<br>4 | 1,163.354<br>4 | 0.0347 | 0.0890 | 1,190.743<br>7 |

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.5 Building Construction - 2023 Mitigated Construction On-Site

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Off-Road | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         | 0.0000   | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |
| Total    | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         | 0.0000   | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | lb/              | day             |               |                   |                  |                |          |                | lb/d           | day    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0279 | 0.9514 | 0.3652 | 4.7300e-<br>003 | 0.1665           | 5.2600e-<br>003 | 0.1717        | 0.0479            | 5.0300e-<br>003  | 0.0530         |          | 511.1084       | 511.1084       | 0.0189 | 0.0741 | 533.6719       |
| Worker   | 0.2088 | 0.1406 | 2.3013 | 6.4500e-<br>003 | 0.7377           | 4.1600e-<br>003 | 0.7419        | 0.1957            | 3.8300e-<br>003  | 0.1995         |          | 652.2460       | 652.2460       | 0.0158 | 0.0149 | 657.0718       |
| Total    | 0.2366 | 1.0921 | 2.6664 | 0.0112          | 0.9042           | 9.4200e-<br>003 | 0.9136        | 0.2436            | 8.8600e-<br>003  | 0.2524         |          | 1,163.354<br>4 | 1,163.354<br>4 | 0.0347 | 0.0890 | 1,190.743<br>7 |

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.5 Building Construction - 2024 Unmitigated Construction On-Site

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Off-Road | 1.4716 | 13.4438 | 16.1668 | 0.0270 |                  | 0.6133          | 0.6133        |                   | 0.5769           | 0.5769         |          | 2,555.698<br>9 | 2,555.698<br>9 | 0.6044 |     | 2,570.807<br>7 |
| Total    | 1.4716 | 13.4438 | 16.1668 | 0.0270 |                  | 0.6133          | 0.6133        |                   | 0.5769           | 0.5769         |          | 2,555.698<br>9 | 2,555.698<br>9 | 0.6044 |     | 2,570.807<br>7 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | lb/i             | day             |               |                   |                  |                |          |                | lb/c           | day    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0272 | 0.9555 | 0.3592 | 4.6600e-<br>003 | 0.1665           | 5.2900e-<br>003 | 0.1717        | 0.0479            | 5.0600e-<br>003  | 0.0530         |          | 503.8355       | 503.8355       | 0.0189 | 0.0732 | 526.1204       |
| Worker   | 0.1948 | 0.1256 | 2.1423 | 6.2600e-<br>003 | 0.7377           | 3.9800e-<br>003 | 0.7417        | 0.1957            | 3.6600e-<br>003  | 0.1993         |          | 633.1595       | 633.1595       | 0.0143 | 0.0138 | 637.6422       |
| Total    | 0.2220 | 1.0811 | 2.5015 | 0.0109          | 0.9042           | 9.2700e-<br>003 | 0.9134        | 0.2436            | 8.7200e-<br>003  | 0.2523         |          | 1,136.994<br>9 | 1,136.994<br>9 | 0.0333 | 0.0870 | 1,163.762<br>6 |

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.5 Building Construction - 2024 Mitigated Construction On-Site

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Off-Road | 1.4716 | 13.4438 | 16.1668 | 0.0270 |                  | 0.6133          | 0.6133        |                   | 0.5769           | 0.5769         | 0.0000   | 2,555.698<br>9 | 2,555.698<br>9 | 0.6044 |     | 2,570.807<br>7 |
| Total    | 1.4716 | 13.4438 | 16.1668 | 0.0270 |                  | 0.6133          | 0.6133        |                   | 0.5769           | 0.5769         | 0.0000   | 2,555.698<br>9 | 2,555.698<br>9 | 0.6044 |     | 2,570.807<br>7 |

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | lb/              | day             |               |                   |                  |                |          |                | lb/d           | day    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0272 | 0.9555 | 0.3592 | 4.6600e-<br>003 | 0.1665           | 5.2900e-<br>003 | 0.1717        | 0.0479            | 5.0600e-<br>003  | 0.0530         |          | 503.8355       | 503.8355       | 0.0189 | 0.0732 | 526.1204       |
| Worker   | 0.1948 | 0.1256 | 2.1423 | 6.2600e-<br>003 | 0.7377           | 3.9800e-<br>003 | 0.7417        | 0.1957            | 3.6600e-<br>003  | 0.1993         |          | 633.1595       | 633.1595       | 0.0143 | 0.0138 | 637.6422       |
| Total    | 0.2220 | 1.0811 | 2.5015 | 0.0109          | 0.9042           | 9.2700e-<br>003 | 0.9134        | 0.2436            | 8.7200e-<br>003  | 0.2523         |          | 1,136.994<br>9 | 1,136.994<br>9 | 0.0333 | 0.0870 | 1,163.762<br>6 |

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.6 Paving - 2024 Unmitigated Construction On-Site

|          | ROG    | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |        |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Off-Road | 0.8814 | 8.2730 | 12.2210 | 0.0189 |                  | 0.3987          | 0.3987        |                   | 0.3685           | 0.3685         |          | 1,805.620<br>5 | 1,805.620<br>5 | 0.5673 |     | 1,819.803<br>9 |
| Paving   | 0.0780 |        |         |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |                | 0.0000         |        |     | 0.0000         |
| Total    | 0.9594 | 8.2730 | 12.2210 | 0.0189 |                  | 0.3987          | 0.3987        |                   | 0.3685           | 0.3685         |          | 1,805.620<br>5 | 1,805.620<br>5 | 0.5673 |     | 1,819.803<br>9 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N20             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/s             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0590 | 0.0381 | 0.6492 | 1.9000e-<br>003 | 0.2236           | 1.2000e-<br>003 | 0.2248        | 0.0593            | 1.1100e-<br>003  | 0.0604         |          | 191.8665  | 191.8665  | 4.3400e-<br>003 | 4.1900e-<br>003 | 193.2249 |
| Total    | 0.0590 | 0.0381 | 0.6492 | 1.9000e-<br>003 | 0.2236           | 1.2000e-<br>003 | 0.2248        | 0.0593            | 1.1100e-<br>003  | 0.0604         |          | 191.8665  | 191.8665  | 4.3400e-<br>003 | 4.1900e-<br>003 | 193.2249 |

CalEEMod Version: CalEEMod.2020.4.0

Page 19 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Paving - 2024 Mitigated Construction On-Site

|          | ROG    | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |        |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Off-Road | 0.8814 | 8.2730 | 12.2210 | 0.0189 |                  | 0.3987          | 0.3987        |                   | 0.3685           | 0.3685         | 0.0000   | 1,805.620<br>5 | 1,805.620<br>5 | 0.5673 |     | 1,819.803<br>9 |
| Paving   | 0.0780 |        |         |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |                | 0.0000         |        |     | 0.0000         |
| Total    | 0.9594 | 8.2730 | 12.2210 | 0.0189 |                  | 0.3987          | 0.3987        |                   | 0.3685           | 0.3685         | 0.0000   | 1,805.620<br>5 | 1,805.620<br>5 | 0.5673 |     | 1,819.803<br>9 |

|          | ROG    | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/              | day             |               |                   |                  |                |          |           | lb/d      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0590 | 0.0381 | 0.6492 | 1.9000e-<br>003 | 0.2236           | 1.2000e-<br>003 | 0.2248        | 0.0593            | 1.1100e-<br>003  | 0.0604         |          | 191.8665  | 191.8665  | 4.3400e-<br>003 | 4.1900e-<br>003 | 193.2249 |
| Total    | 0.0590 | 0.0381 | 0.6492 | 1.9000e-<br>003 | 0.2236           | 1.2000e-<br>003 | 0.2248        | 0.0593            | 1.1100e-<br>003  | 0.0604         |          | 191.8665  | 191.8665  | 4.3400e-<br>003 | 4.1900e-<br>003 | 193.2249 |

CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.7 Architectural Coating - 2024 Unmitigated Construction On-Site

|                 | ROG     | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e     |
|-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------|
| Category        |         |        |        |                 | lb/d             | day             |               |                   |                  |                |          |           | lb/c      | day    |     |          |
| Archit. Coating | 20.9439 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |           | 0.0000    |        |     | 0.0000   |
| Off-Road        | 0.1808  | 1.2188 | 1.8101 | 2.9700e-<br>003 |                  | 0.0609          | 0.0609        |                   | 0.0609           | 0.0609         |          | 281.4481  | 281.4481  | 0.0159 |     | 281.8443 |
| Total           | 21.1247 | 1.2188 | 1.8101 | 2.9700e-<br>003 |                  | 0.0609          | 0.0609        |                   | 0.0609           | 0.0609         |          | 281.4481  | 281.4481  | 0.0159 |     | 281.8443 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/s             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0384 | 0.0247 | 0.4220 | 1.2300e-<br>003 | 0.1453           | 7.8000e-<br>004 | 0.1461        | 0.0385            | 7.2000e-<br>004  | 0.0393         |          | 124.7132  | 124.7132  | 2.8200e-<br>003 | 2.7300e-<br>003 | 125.5962 |
| Total    | 0.0384 | 0.0247 | 0.4220 | 1.2300e-<br>003 | 0.1453           | 7.8000e-<br>004 | 0.1461        | 0.0385            | 7.2000e-<br>004  | 0.0393         |          | 124.7132  | 124.7132  | 2.8200e-<br>003 | 2.7300e-<br>003 | 125.5962 |

CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.7 Architectural Coating - 2024 Mitigated Construction On-Site

|                 | ROG     | NOx    | co     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e     |
|-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------|
| Category        |         |        |        |                 | lb/d             | day             |               |                   |                  |                |          |           | lb/c      | day    |     |          |
| Archit. Coating | 20.9439 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |           | 0.0000    |        |     | 0.0000   |
| Off-Road        | 0.1808  | 1.2188 | 1.8101 | 2.9700e-<br>003 |                  | 0.0609          | 0.0609        |                   | 0.0609           | 0.0609         | 0.0000   | 281.4481  | 281.4481  | 0.0159 |     | 281.8443 |
| Total           | 21.1247 | 1.2188 | 1.8101 | 2.9700e-<br>003 |                  | 0.0609          | 0.0609        |                   | 0.0609           | 0.0609         | 0.0000   | 281.4481  | 281.4481  | 0.0159 |     | 281.8443 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/s             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0384 | 0.0247 | 0.4220 | 1.2300e-<br>003 | 0.1453           | 7.8000e-<br>004 | 0.1461        | 0.0385            | 7.2000e-<br>004  | 0.0393         |          | 124.7132  | 124.7132  | 2.8200e-<br>003 | 2.7300e-<br>003 | 125.5962 |
| Total    | 0.0384 | 0.0247 | 0.4220 | 1.2300e-<br>003 | 0.1453           | 7.8000e-<br>004 | 0.1461        | 0.0385            | 7.2000e-<br>004  | 0.0393         |          | 124.7132  | 124.7132  | 2.8200e-<br>003 | 2.7300e-<br>003 | 125.5962 |

CalEEMod Version: CalEEMod.2020.4.0

Page 22 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 4.0 Operational Detail - Mobile

### 4.1 Mitigation Measures Mobile

|             | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|-------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category    |        |        |        |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |        |                |
| Mitigated   | 0.5789 | 0.6544 | 6.3225 | 0.0149 | 1.5700           | 0.0103          | 1.5802        | 0.4184            | 9.5600e-<br>003  | 0.4279         |          | 1,514.571<br>9 | 1,514.571<br>9 | 0.0882 | 0.0592 | 1,534.427<br>4 |
| Unmitigated | 0.5789 | 0.6544 | 6.3225 | 0.0149 | 1.5700           | 0.0103          | 1.5802        | 0.4184            | 9.5600e-<br>003  | 0.4279         |          | 1,514.571<br>9 | 1,514.571<br>9 | 0.0882 | 0.0592 | 1,534.427<br>4 |

### 4.2 Trip Summary Information

|                               | Ave     | rage Daily Trip Ra | ate    | Unmitigated | Mitigated  |  |
|-------------------------------|---------|--------------------|--------|-------------|------------|--|
| Land Use                      | Weekday | Saturday           | Sunday | Annual VMT  | Annual VMT |  |
| Unrefrigerated Warehouse-Rail | 173.88  | 173.88             | 173.88 | 745,185     | 745,185    |  |
| Parking Lot                   | 0.00    | 0.00 0.00 0.00     |        |             |            |  |
| Total                         | 173.88  | 173.88             | 173.88 | 745,185     | 745,185    |  |

### 4.3 Trip Type Information

|                               | Miles      |            |             | Trip %     |            |             | Trip Purpose % |          |         |
|-------------------------------|------------|------------|-------------|------------|------------|-------------|----------------|----------|---------|
| Land Use                      | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary        | Diverted | Pass-by |
| Unrefrigerated Warehouse-Rail |            | 8.40       | 6.90        | 59.00      | 0.00       | 41.00       | 92             | 5        | 3       |
| Parking Lot                   | 16.60      | 8.40       | 6.90        | 0.00       | 0.00       | 0.00        | 0              | 0        | 0       |

### 4.4 Fleet Mix

CalEEMod Version: CalEEMod.2020.4.0

Page 23 of 28

Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Land Use                      | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Unrefrigerated Warehouse-Rail | 0.543401 | 0.061496 | 0.184986 | 0.128935 | 0.023820 | 0.006437 | 0.011961 | 0.008652 | 0.000812 | 0.000508 | 0.024540 | 0.000745 | 0.003706 |
| Parking Lot                   | 0.543401 | 0.061496 | 0.184986 | 0.128935 | 0.023820 | 0.006437 | 0.011961 | 0.008652 | 0.000812 | 0.000508 | 0.024540 | 0.000745 | 0.003706 |

#### 5.0 Energy Detail

Historical Energy Use: N

#### 5.1 Mitigation Measures Energy

|                           | ROG             | NOx    | co     | \$02            | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|---------------------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Category                  |                 |        |        |                 | lb/e             | day             |                 |                   |                  |                 |          |           | lb/d      | day             |                 |         |
| NaturalGas<br>Mitigated   | 2.5400e-<br>003 | 0.0231 | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999   | 27.6999   | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645 |
| NaturalGas<br>Unmitigated | 2.5400e-<br>003 | 0.0231 | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999   | 27.6999   | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645 |

CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 28

10840 Norwalk Blvd - South Coast Air Basin, Summer

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 5.2 Energy by Land Use - NaturalGas Unmitigated

|                                  | NaturalGa<br>s Use | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|----------------------------------|--------------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Land Use                         | kBTU/yr            |                 |        |        |                 | lb/              | day             |                 |                   |                  |                 |          |           | lb/c      | lay             |                 |         |
| Parking Lot                      | 0                  | 0.0000          | 0.0000 | 0.0000 | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Unrefrigerated<br>Warehouse-Rail | 235.449            | 2.5400e-<br>003 | 0.0231 | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999   | 27.6999   | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645 |
| Total                            |                    | 2.5400e-<br>003 | 0.0231 | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999   | 27.6999   | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645 |

#### **Mitigated**

|                                  | NaturalGa<br>s Use | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|----------------------------------|--------------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Land Use                         | kBTU/yr            |                 |        |        |                 | lb/e             | day             |                 |                   |                  |                 |          |           | lb/c      | day             |                 |         |
| Parking Lot                      | 0                  | 0.0000          | 0.0000 | 0.0000 | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Unrefrigerated<br>Warehouse-Rail | 0.235449           | 2.5400e-<br>003 | 0.0231 | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999   | 27.6999   | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645 |
| Total                            |                    | 2.5400e-<br>003 | 0.0231 | 0.0194 | 1.4000e-<br>004 |                  | 1.7500e-<br>003 | 1.7500e-<br>003 |                   | 1.7500e-<br>003  | 1.7500e-<br>003 |          | 27.6999   | 27.6999   | 5.3000e-<br>004 | 5.1000e-<br>004 | 27.8645 |

#### 6.0 Area Detail

Date: 7/20/2022 11:57 AM

CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 6.1 Mitigation Measures Area

Use Low VOC Paint - Non-Residential Interior
Use Low VOC Paint - Non-Residential Exterior
Use Low VOC Cleaning Supplies

|             | ROG    | NOx             | со     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O | CO2e   |
|-------------|--------|-----------------|--------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----|--------|
| Category    |        |                 |        |        | lb/d             | day             |                 |                   |                  |                 |          |           | lb/d      | day             |     |        |
| Mitigated   | 2.2597 | 2.3000e-<br>004 | 0.0254 | 0.0000 |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545    | 0.0545    | 1.4000e-<br>004 |     | 0.0580 |
| Unmitigated | 2.2597 | 2.3000e-<br>004 | 0.0254 | 0.0000 |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545    | 0.0545    | 1.4000e-<br>004 |     | 0.0580 |

CalEEMod Version: CalEEMod.2020.4.0 Page 26 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 6.2 Area by SubCategory Unmitigated

|                          | ROG             | NOx             | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O | CO2e   |
|--------------------------|-----------------|-----------------|--------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----|--------|
| SubCategory              |                 |                 |        |        | lb/i             | day             |                 |                   |                  |                 |          |           | lb/c      | day             |     |        |
| Architectural<br>Coating | 0.2582          |                 |        |        |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          |          |           | 0.0000    |                 |     | 0.0000 |
| Consumer<br>Products     | 1.9991          |                 |        |        |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          |          |           | 0.0000    |                 |     | 0.0000 |
| Landscaping              | 2.3400e-<br>003 | 2.3000e-<br>004 | 0.0254 | 0.0000 |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545    | 0.0545    | 1.4000e-<br>004 |     | 0.0580 |
| Total                    | 2.2597          | 2.3000e-<br>004 | 0.0254 | 0.0000 |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545    | 0.0545    | 1.4000e-<br>004 |     | 0.0580 |

CalEEMod Version: CalEEMod.2020.4.0 Page 27 of 28 Date: 7/20/2022 11:57 AM

10840 Norwalk Blvd - South Coast Air Basin, Summer

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 6.2 Area by SubCategory Mitigated

|                          | ROG             | NOx             | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O | CO2e   |
|--------------------------|-----------------|-----------------|--------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----|--------|
| SubCategory              |                 |                 |        |        | lb/i             | day             |                 |                   |                  |                 |          |           | lb/d      | day             |     |        |
| Architectural<br>Coating | 0.2582          |                 |        |        |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          |          |           | 0.0000    |                 |     | 0.0000 |
| Consumer<br>Products     | 1.9991          |                 |        |        |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          |          |           | 0.0000    |                 |     | 0.0000 |
| Landscaping              | 2.3400e-<br>003 | 2.3000e-<br>004 | 0.0254 | 0.0000 |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545    | 0.0545    | 1.4000e-<br>004 |     | 0.0580 |
| Total                    | 2.2597          | 2.3000e-<br>004 | 0.0254 | 0.0000 |                  | 9.0000e-<br>005 | 9.0000e-<br>005 |                   | 9.0000e-<br>005  | 9.0000e-<br>005 |          | 0.0545    | 0.0545    | 1.4000e-<br>004 |     | 0.0580 |

#### 7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 28 of 28 Date: 7/20/2022 11:57 AM 10840 Norwalk Blvd - South Coast Air Basin, Summer EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied 8.0 Waste Detail 8.1 Mitigation Measures Waste 9.0 Operational Offroad Equipment Type Fuel Type Number Hours/Day Days/Year Horse Power Load Factor 10.0 Stationary Equipment Fire Pumps and Emergency Generators Equipment Type Number Load Factor Hours/Day Hours/Year Horse Power Fuel Type **Boilers** Equipment Type Number Heat Input/Day Heat Input/Year **Boiler Rating** Fuel Type **User Defined Equipment** Equipment Type Number 11.0 Vegetation

| Initial Study and Mitigated Negative Declaration • Goodman Santa Fe Springs SPE LLC Project 10840 Norwalk Blvd • City of Santa Fe Springs |
|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
| THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.                                                                                              |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
| Appropries D. a. Liene graph of Managaraphys                                                                                              |

# APPENDIX B – UTILITIES AND ENERGY WORKSHEETS

#### INTRODUCTION TO UTILITY SCREENING TABLES

The following worksheets are used to evaluated the potential impacts of a project.

#### Table 1 Definition of Project

This Table is used to establish the proposed development parameters that are used the calculation of utilities usage. The independent variable to be entered is identified by shading. For residential development, the number of housing units should be entered in the shaded area. For non-residential development, the total floor area of development should be entered in the shaded area.

#### **Tables 2 Summary of Project Impacts**

Consumption/Generation Rates. This table indicates the development's projected electrical consumption, natural gas consumption, water consumption, effluent generation, and solid waste generation. No modifications should be made to this table.

#### Tables 3 through 5 Calculation of Project Impacts

Tables 3 through 7 indicate the results of the analysis

Table 3 Water Consumption - This Table calculates the projected water consumption ratesfor new development. Default generation rates provided in the shaded areas may be changed.

Table 4 Sewage Generation - This Table calculates the projected effluent generation rates for new development. Default generation rates provided in the shaded areas may be changed.

Table 5 Solid Waste Generation - This Table calculates the projected waste generation for new development. Default generation rates provided in the shaded areas may be changed.

#### Table 1 Project Name: Project Name

Goodman Santa Fe Springs

Definition of Project Parameters - Enter independent variable (no. of units or floor area) in the shaded area. The independent variable to be entered is the number of units (for residential development) or the gross floor area (for non-residential development).

| Land Use                    | Independent  | Factor           |
|-----------------------------|--------------|------------------|
| Residential Uses            | Variable     | Total Units      |
| Single-Family Residential   | No. of Units | 0                |
| Medium Density Residential  | No. of Units | 0                |
| Multiple-Family Residential | No. of Units | 0                |
| Mobile Home                 | No. of Units | 0                |
| Office Uses                 | Variable     | Total Floor Area |
| Office                      | Sq. Ft.      | 0                |
| Medical Office Building     | Sq. Ft.      | 0                |
| Office Park                 | Sq. Ft.      | 0                |
| Bank/Financial Services     | Sq. Ft.      | 0                |
| Commercial Uses             | Variable     | Floor Area/Rooms |
| Specialty Retail Commercial | Sq. Ft.      | 0                |
| Convenience Store           | Sq. Ft.      | 0                |
| Movie Theater               | Sq. Ft.      | 0                |
| Shopping Center             | Sq. Ft.      | 0                |
| Sit-Down Restaurant         | Sq. Ft.      | 0                |
| Fast-Food Restaurant        | Sq. Ft.      | 0                |
| Hotel                       | Rooms        | 0                |
| Manufacturing Uses          | Variable     | Total Floor Area |
| Industrial Park             | Sq. Ft.      | 0                |
| Manufacturing               | Sq. Ft.      | 0                |
| General Light Industry      | Sq. Ft.      | 0                |
| Warehouse                   | Sq. Ft.      | 99,948           |
| Public/Institutional        | Variable     | Total Floor Area |
| Public/Institutional        | Sq. Ft.      | 0                |
| Open Space                  | Sq. Ft.      | 0                |

### Table 2: Projected Utility Consumption and Generation

Summary of Project Impacts - Results of analysis identified below. No modifications should be made to this Table.

| Utilities Consumption and Generation | Factor      | Rates |
|--------------------------------------|-------------|-------|
| Water Consumption                    | gallons/day | 4,498 |
| Sewage Generation                    | gallons/day | 2,499 |
| Solid Waste Generation               | pounds/day  | 893   |

| Project                            | Units of     |                |                   | Projected   |
|------------------------------------|--------------|----------------|-------------------|-------------|
| Component                          | Measure      | Consumption    |                   | Consumption |
| Residential Uses                   | No. of Units | Gals. of Water | Variable          | Gals./Day   |
| Single-Family Residential          | 0            | 390.00         | Gals./Day/Unit    | 0.0         |
| Medium Density Residential         | 0            | 300.00         | Gals./Day/Unit    | 0.0         |
| Multiple-Family Residential        | 0            | 234.00         | Gals./Day/Unit    | 0.0         |
| Mobile Home                        | 0            | 234.00         | Gals./Day/Unit    | 0.0         |
| Office Uses                        | Sq. Ft.      | Gals. of Water | Variable          | Gals./Day   |
| Office                             | 0            | 0.30           | Gals./Day/Sq. Ft. | 0.0         |
| Medical Office Building            | 0            | 0.30           | Gals./Day/Sq. Ft. | 0.0         |
| Office Park                        | 0            | 0.30           | Gals./Day/Sq. Ft. | 0.0         |
| Bank/Financial Services            | 0            | 0.15           | Gals./Day/Sq. Ft. | 0.0         |
| Commercial Uses                    | Sq. Ft./Room | Gals. of Water | Variable          | Gals./Day   |
| Specialty Retail Commercial        | 0            | 0.15           | Gals./Day/Sq. Ft. | 0.0         |
| Convenience Store                  | 0            | 0.15           | Gals./Day/Sq. Ft. | 0.0         |
| Movie Theater                      | 0            | 0.20           | Gals./Day/Sq. Ft. | 0.0         |
| Shopping Center                    | 0            | 0.50           | Gals./Day/Sq. Ft. | 0.0         |
| Sit-Down Restaurant                | 0            | 1.50           | Gals./Day/Sq. Ft. | 0.0         |
| Fast-Food Restaurant               | 0            | 0.12           | Gals./Day/Sq. Ft. | 0.0         |
| Hotel                              | 0            | 187.50         | Gals./Day/Room.   | 0.0         |
| Manufacturing Uses                 | Sq. Ft.      | Gals. of Water | Variable          | Gals./Day   |
| Industrial Park                    | 0            | 0.30           | Gals./Day/Sq. Ft. | 0.0         |
| Manufacturing                      | 0            | 0.30           | Gals./Day/Sq. Ft. | 0.0         |
| General Light Industry             | 0            | 0.30           | Gals./Day/Sq. Ft. | 0.0         |
| Warehouse                          | 99,948       | 0.05           | Gals./Day/Sq. Ft. | 4,497.7     |
| Public/Institutional Use           | Sq. Ft.      | Gals. of Water | Variable          | Gals./Day   |
| Public/Institutional               | 0            | 0.12           | Gals./Day/Sq. Ft. | 0.0         |
| Open Space                         | 0            | 0.12           | Gals./Day/Sq. Ft. | 0.0         |
| Total Daily Water Consumption (gal | lons/day)    |                |                   | 4,497.7     |

| Project<br>Component              | Units of<br>Measure | Generation I      | Factor            | Projected<br>Consumption |
|-----------------------------------|---------------------|-------------------|-------------------|--------------------------|
| Residential Uses                  | # of Units          | Gals. of Effluent | Variable          | Gals./Day                |
| Single-Family Residential         | 0                   | 260.00            | Gals./Day/Unit    | 0.0                      |
| Medium Density Residential        | 0                   | 200.00            | Gals./Day/Unit    | 0.0                      |
| Multiple-Family Residential       | 0                   | 156.00            | Gals./Day/Unit    | 0.0                      |
| Mobile Home                       | 0                   | 156.00            | Gals./Day/Unit    | 0.0                      |
| Office Uses                       | Sq. Ft.             | Gals. of Effluent | Variable          | Gals./Day                |
| Office                            | 0                   | 0.20              | Gals./Day/Sq. Ft. | 0.0                      |
| Medical Office Building           | 0                   | 0.20              | Gals./Day/Sq. Ft. | 0.0                      |
| Office Park                       | 0                   | 0.20              | Gals./Day/Sq. Ft. | 0.0                      |
| Bank/Financial Services           | 0                   | 0.10              | Gals./Day/Sq. Ft. | 0.0                      |
| Commercial Uses                   | Sq. Ft./# Rooms     | Gals. of Effluent | Variable          | Gals./Day                |
| Specialty Retail Commercial       | 0                   | 0.10              | Gals./Day/Sq. Ft. | 0.0                      |
| Convenience Store                 | 0                   | 0.10              | Gals./Day/Sq. Ft. | 0.0                      |
| Movie Theater                     | 0                   | 0.13              | Gals./Day/Sq. Ft. | 0.0                      |
| Shopping Center                   | 0                   | 0.33              | Gals./Day/Sq. Ft. | 0.0                      |
| Sit-Down Restaurant               | 0                   | 1.00              | Gals./Day/Sq. Ft. | 0.0                      |
| Fast-Food Restaurant              | 0                   | 0.08              | Gals./Day/Sq. Ft. | 0.0                      |
| Hotel                             | 0                   | 125               | Gals./Day/Room.   | 0.0                      |
| Manufacturing Uses                | Sq. Ft.             | Gals. of Effluent | Variable          | Gals./Day                |
| Industrial Park                   | 0                   | 0.20              | Gals./Day/Sq. Ft. | 0.0                      |
| Manufacturing                     | 0                   | 0.20              | Gals./Day/Sq. Ft. | 0.0                      |
| General Light Industry            | 0                   | 0.20              | Gals./Day/Sq. Ft. | 0.0                      |
| Warehouse                         | 99,948              | 0.03              | Gals./Day/Sq. Ft. | 2,498.7                  |
| Public/Institutional Use          | Sq. Ft.             | Gals. of Effluent | Variable          | Gals./Day                |
| Public/Institutional              | 0                   | 0.10              | Gals./Day/Sq. Ft. | 0.0                      |
| Open Space                        | 0                   | 0.10              | Gals./Day/Sq. Ft. | 0.0                      |
| Total Daily Sewage Generation (ga | llons/day)          |                   |                   | 2,498.7                  |

#### INTRODUCTION TO ENERGY SCREENING TABLES

The following worksheets are used to evaluated the potential impacts of a project.

#### Table 1 Definition of Project

This Table is used to establish the proposed development parameters that are used the calculation of energy usage. The independent variable to be entered is identified by shading. For residential development, the number of housing units should be entered in the shaded area. For non-residential development, the total floor area of development should be entered in the shaded area.

#### **Tables 2 Summary of Project Impacts**

Consumption/Generation Rates. This table indicates the development's projected electrical consumption, natural gas consumption, water consumption, effluent generation, and solid waste generation. No modifications should be made to this table.

#### Tables 3 through 4 Calculation of Project Impacts

Tables 3 through 4 indicate the results of the analysis.

Table 3 Electrical Consumption - This Table calculates the projected electrical consumption for new development. Default generation rates provided in the shaded areas may be changed.

Table 4 Natural Gas Consumption - This Table calculates the projected natural gas useagefor new development. Default generation rates provided in the shaded areas may be changed.

#### Table 1 Project Name: Goodman Santa Fe Springs

Definition of Project Parameters - Enter independent variable (no. of units or floor area) in the shaded area. The independent variable to be entered is the number of units (for residential development) or the gross floor area (for non-residential development).

| Land Use                    | Independent  | Factor           |
|-----------------------------|--------------|------------------|
| Residential Uses            | Variable     | Total Units      |
| Single-Family Residential   | No. of Units | 0                |
| Medium Density Residential  | No. of Units | 0                |
| Multiple-Family Residential | No. of Units | 0                |
| Mobile Home                 | No. of Units | 0                |
| Office Uses                 | Variable     | Total Floor Area |
| Office                      | Sq. Ft.      | 0                |
| Medical Office Building     | Sq. Ft.      | 0                |
| Office Park                 | Sq. Ft.      | 0                |
| Bank/Financial Services     | Sq. Ft.      | 0                |
| Commercial Uses             | Variable     | Floor Area/Rooms |
| Specialty Retail Commercial | Sq. Ft.      | 0                |
| Convenience Store           | Sq. Ft.      | 0                |
| Movie Theater               | Sq. Ft.      | 0                |
| Shopping Center             | Sq. Ft.      | 0                |
| Sit-Down Restaurant         | Sq. Ft.      | 0                |
| Fast-Food Restaurant        | Sq. Ft.      | 0                |
| Hotel                       | Rooms        | 0                |
| Manufacturing Uses          | Variable     | Total Floor Area |
| Industrial Park             | Sq. Ft.      | 0                |
| Manufacturing               | Sq. Ft.      | 0                |
| General Light Industry      | Sq. Ft.      | 0                |
| Warehouse                   | Sq. Ft.      | 99,948           |
| Public/Institutional        | Variable     | Total Floor Area |
| Public/Institutional        | Sq. Ft.      | 0                |
| Open Space                  | Sq. Ft.      | 0                |

#### Table 2: Projected Energy Consumption and Generation

Summary of Project Impacts - Results of analysis identified below. No modifications should be made to this Table.

| Utilities Consumption and Generation | Factor         | Rates |
|--------------------------------------|----------------|-------|
| Electrical Consumption               | kWh/day        | 1,314 |
| Natural Gas Consumption              | cubic feet/day | 1,287 |

| Project                            | Units of      |                    |                  | Projected       |
|------------------------------------|---------------|--------------------|------------------|-----------------|
| Component                          | Measure       | Consumption Factor |                  | Consumption     |
| Residential Uses                   | No. of Units  | kWh                | Variable         | kWh/Unit/Day    |
| Single-Family Residential          | 0             | 5,625.00           | kWh/Unit/Year    | 0.0             |
| Medium Density Residential         | 0             | 5,625.00           | kWh/Unit/Year    | 0.0             |
| Multiple-Family Residential        | 0             | 5,625.00           | kWh/Unit/Year    | 0.0             |
| Mobile Home                        | 0             | 4,644.00           | kWh/Unit/Year    | 0.0             |
| Office Uses                        | Sq. Ft.       | kWh                | Variable         | kWh/Sq. Ft./Day |
| Office                             | 0             | 20.80              | kWh/Sq. Ft./Year | 0.0             |
| Medical Office Building            | 0             | 14.20              | kWh/Sq. Ft./Year | 0.0             |
| Office Park                        | 0             | 20.80              | kWh/Sq. Ft./Year | 0.0             |
| Bank/Financial Services            | 0             | 20.80              | kWh/Sq. Ft./Year | 0.0             |
| Commercial Uses                    | Sq. Ft./Rooms | kWh                | Variable         | kWh/Sq. Ft./Day |
| Specialty Retail Commercial        | 0             | 16.00              | kWh/Sq. Ft./Year | 0.0             |
| Convenience Store                  | 0             | 16.00              | kWh/Sq. Ft./Year | 0.0             |
| Movie Theater                      | 0             | 16.00              | kWh/Sq. Ft./Year | 0.0             |
| Shopping Center                    | 0             | 35.90              | kWh/Sq. Ft./Year | 0               |
| Sit-Down Restaurant                | 0             | 49.10              | kWh/Sq. Ft./Year | 0.0             |
| Fast-Food Restaurant               | 0             | 49.10              | kWh/Sq. Ft./Year | 0.0             |
| Hotel                              | 0             | 8,955.00           | kWh/Sq. Ft./Year | 0.0             |
| Manufacturing Uses                 | Sq. Ft.       | kWh                | Variable         | kWh/Sq. Ft./Day |
| ndustrial Park                     | 0             | 4.80               | kWh/Sq. Ft./Year | 0.0             |
| Manufacturing                      | 0             | 4.80               | kWh/Sq. Ft./Year | 0.0             |
| General Light Industry             | 0             | 4.80               | kWh/Sq. Ft./Year | 0.0             |
| Warehouse                          | 99,948        | 4.80               | kWh/Sq. Ft./Year | 1,314.4         |
| Public/Institutional               | Sq. Ft.       | kWh                | Variable         | kWh/Sq. Ft./Day |
| Public/Institutional               | 0             | 4.80               | kWh/Sq. Ft./Year | 0.0             |
| Open Space                         | 0             | 0.00               | kWh/Sq. Ft./Year | 0.0             |
| Total Daily Electrical Consumption | (kWh/day)     |                    |                  | 1,314.4         |

Residential rates were derived from the SCAQMD's CEQA Air Quality Handbook (April 1993). All other rates are from Common Forecasting Methodology VII Demand Forms, 1989

| Project<br>Component                | Units of<br>Measure | Consumption F       |                     | Projected<br>Consumption |
|-------------------------------------|---------------------|---------------------|---------------------|--------------------------|
| Residential Uses                    | No. of Units        | Cu. Ft. of Nat. Gas | Variable            | Cu. Ft,/Day              |
| Single-Family Residential           | 0                   | 6,665.00            | Cu. Ft./Mo./Unit    | 0.0                      |
| Medium Density Residential          | 0                   | 4,011.50            | Cu. Ft./Mo./Unit    | 0.0                      |
| Multiple-Family Residential         | 0                   | 4,011.50            | Cu. Ft./Mo./Unit    | 0.0                      |
| Mobile Home                         | 0                   | 4,011.50            | Cu. Ft./Mo./Unit    | 0.0                      |
| Office Uses                         | Sq. Ft.             | Cu. Ft. of Nat. Gas | Variable            | Cu. Ft,/Day              |
| Office                              | 0                   | 2.00                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Medical Office Building             | 0                   | 2.00                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Office Park                         | 0                   | 2.00                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Bank/Financial Services             | 0                   | 2.00                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Commercial Uses                     | Sq. Ft./Rooms       | Cu. Ft. of Nat. Gas | Variable            | Cu. Ft,/Day              |
| Specialty Retail Commercial         | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Convenience Store                   | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Movie Theater                       | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Shopping Center                     | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Sit-Down Restaurant                 | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Fast-Food Restaurant                | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Hotel                               | 0                   | 2.90                | Cu. Ft./Mo./Room    | 0.0                      |
| Manufacturing Uses                  | Sq. Ft.             | Cu. Ft. of Nat. Gas | Variable            | Cu. Ft,/Day              |
| Industrial Park                     | 0                   | 4.70                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Manufacturing                       | 0                   | 4.70                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| General Light Industry              | 0                   | 4.70                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Warehouse                           | 99,948              | 4.70                | Cu. Ft./Mo./Sq. Ft. | 1,287.0                  |
| Public/Institutional Use            | Sq. Ft.             | Cu. Ft. of Nat. Gas | Variable            | Cu. Ft,/Day              |
| Public/Institutional                | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Open Space                          | 0                   | 2.90                | Cu. Ft./Mo./Sq. Ft. | 0.0                      |
| Total Daily Natural Gas Consumption | on (cubic feet/day) |                     |                     | 1,287.0                  |

| Initial Study and Mitigated Negative Declaration • Goodman Santa Fe Springs SPE LLC Projec<br>10840 Norwalk Blvd • City of Santa Fe Springs | т |
|---------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                             |   |
|                                                                                                                                             |   |

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

### APPENDIX C – TRAFFIC STUDY

Appendix C 

◆ Traffic Study

Page 145



15068-01 VMT.docx

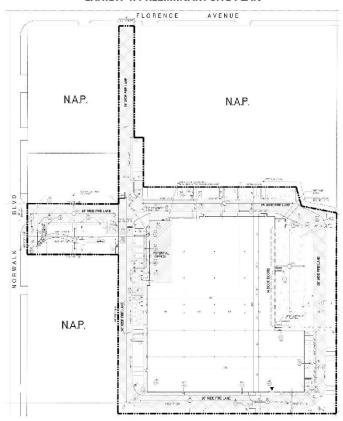
August 18, 2022

Ms. Claudia Jiminez City of Santa Fe Springs 11710 E. Telegraph Road Santa Fe Springs, CA 90670

#### GLC SANTA FE SPRINGS BUILDING 4 VEHICLE MILES TRAVELED (VMT) ANALYSIS

Ms. Claudia Jiminez,

Urban Crossroads, Inc. is pleased to provide the following Vehicle Miles Traveled (VMT) Analysis for the GLC Santa Fe Springs Building 4 development (**Project**), which is located at 10840 Norwalk Boulevard in the City of Santa Fe Springs.


#### **PROJECT OVERVIEW**

The Project includes the development of a new 99,929 square foot warehouse building, consisting of 3,000 square feet of office space, 5,200 square feet of mezzanine space, and 91,369 square feet of warehouse space (see Exhibit 1). The proposed Project will replace an existing oil well operating and maintenance business consisting of a 12,232 square foot office building and 29,680 square feet of maintenance/operations buildings. In addition, here was a 30,500 square foot metal canopy that has already been demolished.

20341 SW Birch Street | Suite 230 | Newport Beach, CA 92660 | (949) 660-1994 | urbanxroads.com

Ms. Claudia Jiminez City of Santa Fe Springs August 18, 2022 Page 2 of 6

#### **EXHIBIT 1: PRELIMINARY SITE PLAN**



#### **BACKGROUND**

Changes to California Environmental Quality Act (CEQA) Guidelines were adopted in December 2018, which requires all lead agencies to adopt VMT as a replacement for automobile delay-based level of service (LOS) as the new measure for identifying transportation impacts for land use projects. This statewide mandate went into effect July 1, 2020. To aid in this transition, the Governor's Office of Planning and Research (OPR) released a <u>Technical Advisory on Evaluating Transportation Impacts in CEQA</u> (December of 2018) (**Technical Advisory**) (1). Based on OPR's Technical Advisory, the County of Los Angeles has prepared their <u>Transportation Impact Analysis Guidelines</u> (**County Guidelines**) (2). Based on consultation with the City of Santa Fe Springs, VMT analysis guidelines and thresholds are not yet available. As such, this analysis has utilized the County Guidelines for the review of screening criteria, which is consistent with the OPR's Technical Advisory.

URBAN CROSSROADS

15068-01 VMT.docx

Ms. Claudia Jiminez City of Santa Fe Springs August 18, 2022 Page 3 of 6

#### **VMT SCREENING**

Consistent with County Guidelines, projects that meet certain screening criteria based on their location and project type may be presumed to result in a less than significant transportation impact. Consistent with the screening criteria identified with the County Guidelines, the following screening criteria may be applicable to the Project:

- Non-Retail Project Trip Generation Screening
- · Proximity to Transit Based Screening

A land use project need only to meet one of the above screening thresholds to result in a less than significant impact.

#### **NON-RETAIL PROJECT TRIP GENERATION SCREENING**

The County Guidelines identify that small projects anticipated to generate low traffic volumes (i.e., fewer than 110 daily net new trips) are presumed to have a less than significant impact absent substantial evidence to the contrary.

#### **Existing Traffic**

The proposed Project will replace an existing oil well operating and maintenance business, which consists of a 12,232 square foot office building and 29,680 square feet of maintenance and operations buildings. In an effort to understand the existing traffic associated with the current uses, the trip generation rates used for this analysis are based upon information collected by the Institute of Transportation Engineers (ITE) as provided in their <u>Trip Generation Manual</u> (11<sup>th</sup> Edition, 2021) (3) for the existing manufacturing use (ITE Land Use Code 140) and the proposed warehousing (ITE Land use Code 150) and high-cube cold-storage warehouse use (ITE Land Use Code 157) (see Table 1).

**TABLE 1: TRIP GENERATION RATES** 

|                                               | ITE LU |                    | AM    | /I Peak H | our   | PN    | M Peak Hour |       |       |  |
|-----------------------------------------------|--------|--------------------|-------|-----------|-------|-------|-------------|-------|-------|--|
| Land Use <sup>1</sup>                         | Code   | Units <sup>2</sup> | In    | Out       | Total | In    | Out         | Total | Daily |  |
| Actual Vehicles:                              |        |                    |       |           |       |       |             |       |       |  |
| Manufacturing <sup>3</sup>                    | 140    | 40 TSF             | 0.517 | 0.163     | 0.680 | 0.229 | 0.511       | 0.740 | 4.750 |  |
| Passenger Cars                                |        |                    | 0.500 | 0.150     | 0.650 | 0.217 | 0.493       | 0.710 | 4.300 |  |
| Trucks                                        |        |                    | 0.017 | 0.013     | 0.030 | 0.012 | 0.018       | 0.030 | 0.450 |  |
| Warehousing <sup>3</sup>                      | 150    | 150 TSF            | 0.131 | 0.039     | 0.170 | 0.050 | 0.130       | 0.180 | 1.710 |  |
| Passenger Cars                                |        |                    | 0.120 | 0.030     | 0.150 | 0.034 | 0.116       | 0.150 | 1.110 |  |
| Trucks                                        |        |                    | 0.011 | 0.009     | 0.020 | 0.016 | 0.014       | 0.030 | 0.600 |  |
| High-Cube Cold Storage Warehouse <sup>3</sup> | 157    | TSF                | 0.085 | 0.025     | 0.110 | 0.034 | 0.086       | 0.120 | 2.120 |  |
| Passenger Cars                                |        |                    | 0.076 | 0.004     | 0.080 | 0.019 | 0.071       | 0.090 | 1.370 |  |
| Trucks                                        |        |                    | 0.009 | 0.021     | 0.030 | 0.015 | 0.015       | 0.030 | 0.750 |  |

<sup>&</sup>lt;sup>1</sup> Trip Generation & Vehicle Mix Source: Institute of Transportation Engineers (ITE), <u>Trip Generation Manual</u>, Eleventh Edition (2021).

URBAN CROSSROADS

15068-01 VMT.docx

APPENDIX C 

Traffic Study

Page 148

<sup>&</sup>lt;sup>2</sup> TSF = thousand square feet

<sup>&</sup>lt;sup>3</sup> Truck Mix: South Coast Air Quality Management District's (SCAQMD) recommended truck mix, by axle type. Normalized % - Without Cold Storage: 16.7% 2-Axle trucks, 20.7% 3-Axle trucks, 62.6% 4-Axle trucks. Normalized % - With Cold Storage: 34.7% 2-Axle trucks, 11.0% 3-Axle trucks, 54.3% 4-Axle trucks.

Ms. Claudia Jiminez City of Santa Fe Springs August 18, 2022 Page 4 of 6

The following summarizes the proposed land use and vehicle mix:

- Manufacturing ITE land use code 140 has been used to derive site specific trip generation estimates for both the existing use (41,912 square feet including the office space) and the Project. A manufacturing facility is an area where the primary activity is the conversion of raw materials or parts into finished products. Size and type of activity may vary substantially from one facility to another. In addition to the actual production of goods, manufacturing facilities generally also have office, warehouse, research, and associated functions. The vehicle mix has been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following South Coast Air Quality Management District (SCAQMD) recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- Warehousing ITE Land Use Code 150 has been used to derive site specific trip generation estimates for the proposed Project (25% of the total square footage, or 24,982 square feet). A warehouse is primarily devoted to the storage of materials but may also include office and maintenance areas. The vehicle mix has also been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- High-Cube Cold Storage Warehouse ITE land use code 157 has been used to derive site specific trip generation estimates for the proposed Project (75% of the total square footage, or 74,947 square feet). High-cube cold storage warehouses include warehouses characterized by the storage and/or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. High-cube cold storage warehouses are facilities typified by temperature-controlled environments for frozen food or other perishable products. The High-Cube Cold Storage Warehouse vehicle mix (passenger cars versus trucks) has been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 34.7%; 3-Axle = 11.0%; 4+-Axle = 54.3%.

The trip generation summary illustrating daily generation estimates for the existing use in actual vehicles are shown on Table 2. As shown in Table 2, the existing use generates a total of 202 daily vehicle trips.

#### **TABLE 2: EXISTING TRIP GENERATION**

| Existing Land Use             |                             | Al | M Peak H | our   | PM Peak Hour |     |       |       |  |
|-------------------------------|-----------------------------|----|----------|-------|--------------|-----|-------|-------|--|
|                               | Quantity Units <sup>1</sup> | In | Out      | Total | In           | Out | Total | Daily |  |
| Actual Vehicles:              |                             |    |          |       |              |     |       |       |  |
| Manufacturing                 | 41.912 TSF                  |    |          |       |              |     |       |       |  |
| Passenger Cars:               |                             | 21 | 7        | 28    | 10           | 21  | 31    | 182   |  |
| Total Trucks:                 |                             | 3  | 3        | 6     | 3            | 3   | 6     | 20    |  |
| Total Trips (Actual Vehicles) |                             | 24 | 10       | 34    | 13           | 24  | 37    | 202   |  |

<sup>&</sup>lt;sup>1</sup> TSF = thousand square feet

#### **Proposed Project**

The trip generation rates used for this analysis are based upon information collected by the ITE as provided in their <u>Trip Generation Manual</u> (11<sup>th</sup> Edition, 2021) are shown previously on Table 1. The trip generation summary illustrating daily trip generation estimates for the proposed Project in actual vehicles are shown on Table 3 based on 74,947 square feet of high-cube cold storage

URBAN CROSSROADS

15068-01 VMT.docx

Ms. Claudia Jiminez City of Santa Fe Springs August 18, 2022 Page 5 of 6

warehouse use (75%) and 24,982 square feet of warehousing use (25%). As shown in Table 3, the proposed Project is anticipated to generate a total of 204 daily vehicle trips.

TABLE 3: PROPOSED PROJECT TRIP GENERATION SUMMARY

|                               |                             | Al | M Peak H | our   | PI | PM Peak Hour |       |       |
|-------------------------------|-----------------------------|----|----------|-------|----|--------------|-------|-------|
| Project Land Use              | Quantity Units <sup>1</sup> | In | Out      | Total | In | Out          | Total | Daily |
| Actual Vehicles:              |                             |    |          |       |    |              |       |       |
| Warehouse (25%)               | 24.982 TSF                  |    |          |       |    |              |       |       |
| Passenger Cars:               |                             | 3  | 1        | 4     | 1  | 3            | 4     | 28    |
| Total Trucks:                 |                             | 1  | 1        | 2     | 1  | 1            | 2     | 16    |
| High-Cube Cold Storage (75%)  | 74.947 TSF                  |    |          |       |    |              |       |       |
| Passenger Cars:               |                             | 6  | 0        | 6     | 1  | 5            | 6     | 104   |
| Total Trucks:                 |                             | 1  | 2        | 3     | 1  | 1            | 2     | 56    |
| Total Trips (Actual Vehicles) |                             | 11 | 4        | 15    | 4  | 10           | 14    | 204   |

<sup>1</sup> TSF = thousand square feet

#### **Trip Generation Comparison**

Table 4 shows the trip generation comparison between the existing and proposed use. The resulting net new trips are identified on Table 4. As shown, the Project is anticipated to generate a net increase of 2 daily vehicle trips.

**TABLE 4: TRIP GENERATION COMPARISON** 

|                                            | AM  | Peak F | Hour  | PM | Peak H | Hour  |       |
|--------------------------------------------|-----|--------|-------|----|--------|-------|-------|
| Land Use                                   | In  | Out    | Total | In | Out    | Total | Daily |
| Proposed Project                           |     |        |       |    |        |       |       |
| Passenger Cars:                            | 9   | 1      | 10    | 2  | 8      | 10    | 132   |
| Total Truck Trips (Actual Vehicles):       | 2   | 3      | 5     | 2  | 2      | 4     | 72    |
| Total Trips (Actual Vehicles) <sup>1</sup> | 11  | 4      | 15    | 4  | 10     | 14    | 204   |
| Existing Use                               |     |        |       |    |        |       |       |
| Passenger Cars:                            | 21  | 7      | 28    | 10 | 21     | 31    | 182   |
| Total Truck Trips (Actual Vehicles):       | 3   | 3      | 6     | 3  | 3      | 6     | 20    |
| Total Trips (Actual Vehicles) <sup>1</sup> | 24  | 10     | 34    | 13 | 24     | 37    | 202   |
| Variance                                   |     |        |       |    |        |       |       |
| Passenger Cars:                            | -12 | -6     | -18   | -8 | -13    | -21   | -50   |
| Total Truck Trips (Actual Vehicles):       | -1  | 0      | -1    | -1 | -1     | -2    | 52    |
| Total Trips (Actual Vehicles) <sup>1</sup> | -13 | -6     | -19   | -9 | -14    | -23   | 2     |

<sup>&</sup>lt;sup>1</sup> Total Trips = Passenger Cars + Truck Trips.

The proposed Project is anticipated to generate a net increase of 2 daily vehicle trips, which does not exceed the 110 daily vehicle trip threshold.

Non-Retail Project Trip Generation screening criteria is met.

URBAN CROSSROADS

15068-01 VMT.docx

Ms. Claudia Jiminez City of Santa Fe Springs August 18, 2022 Page 6 of 6

#### PROXIMITY TO TRANSIT BASED SCREENING

Consistent with guidance identified in the County Guidelines, projects located within a Transit Priority Area (TPA) (i.e., within ½ mile of an existing "major transit stop" or an existing stop along a "high-quality transit corridor" may be presumed to have a less than significant impact absent substantial evidence to the contrary. However, the presumption may not be appropriate if a project:

- Has a Floor Area Ratio (FAR) of less than 0.75;
- Includes more parking for use by residents, customers, or employees of the project than required by the jurisdiction (if the jurisdiction requires the project to supply parking);
- Is inconsistent with the applicable Sustainable Communities Strategy (as determined by the lead agency, with input from the Metropolitan Planning Organization); or
- Replaces affordable residential units with a smaller number of moderate- or high-income residential units.

Based on the Screening Tool, the Project site is shown not to be located within a TPA. (See Attachment A).

Proximity to Transit Based screening criteria is not met.

#### CONCLUSION

Based on our review of applicable VMT screening thresholds, the Project meets the Non-Retail Project Trip Generation Screening and would therefore be presumed to result in a less than significant VMT impact; no additional VMT analysis is required.

If you have any questions, please contact me directly at aso@urbanxroads.com.

Respectfully submitted,

URBAN CROSSROADS, INC.

Alexander So Senior Associate

URBAN CROSSROADS

15068-01 VMT.docx

<sup>&</sup>lt;sup>1</sup> Pub. Resources Code, § 21064.3 ("'Major transit stop' means a site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods.").

<sup>&</sup>lt;sup>2</sup> Pub. Resources Code, § 21155 ("For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.").

#### **REFERENCES**

- 1. **Office of Planning and Research.** *Technical Advisory on Evaluating Transportation Impacts in CEQA.* State of California: s.n., December 2018.
- 2. **County of Los Angeles.** *Transportation Impact Analysis.* County of Los Angeles: s.n., July 2020.
- 3. Institute of Transportation Engineers. *Trip Generation Manual.* 11th Edition. 2021.

URBAN CROSSROADS

15068-01 VMT.docx

# ATTACHMENT A TPA MAP

URBAN CROSSROADS

15068-01 VMT.docx



URBAN CROSSROADS

15068-01 VMT.docx



15068-02 TG Letter

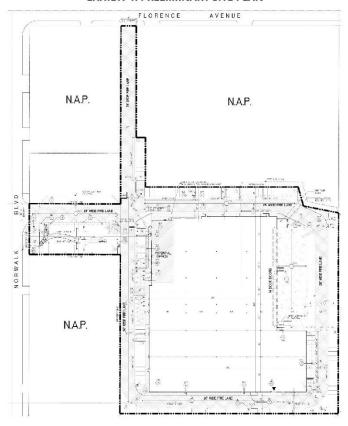
August 17, 2022

Ms. Claudia Jimenez City of Santa Fe Springs 11710 E. Telegraph Road Santa Fe Springs, CA 90670

#### **GLC SANTA FE SPRINGS BUILDING 4 TRIP GENERATION ASSESSMENT**

Ms. Claudia Jimenez,

Urban Crossroads, Inc. is pleased to submit this Trip Generation Assessment for the proposed GLC Santa Fe Springs Building 4 development (**Project**), which is located at 10840 Norwalk Boulevard in the City of Santa Fe Springs.


#### PROPOSED PROJECT

The Project includes the development a of a new 99,929 square foot warehouse building, which consists of 3,000 square feet of office space, 5,200 square feet of mezzanine space, and 91,369 square feet of warehouse space. The proposed Project will replace an existing oil well operating and maintenance business, which consists of a 12,232 square foot office building and 29,680 square feet of maintenance/operations buildings. There was a 30,500 square foot metal canopy that has already been demolished. Access to the site will be accommodated via Florence Avenue to the north and Norwalk Boulevard to the west.

20341 SW Birch Street | Suite 230 | Newport Beach, CA 92660 | (949) 660-1994 | **urbanxroads.com** 

Ms. Claudia Jimenez City of Santa Fe Springs August 17, 2022 Page 2 of 6

#### **EXHIBIT 1: PRELIMINARY SITE PLAN**



#### **TRIP GENERATION**

#### **EXISTING TRAFFIC**

The proposed Project will replace an existing oil well operating and maintenance business, which consists of a 12,232 square foot office building and 29,680 square feet of maintenance/operations buildings. In an effort to understand the existing traffic associated with the current uses, the trip generation rates used for this analysis are based upon information collected by the Institute of Transportation Engineers (ITE) as provided in their <u>Trip Generation Manual</u> (11<sup>th</sup> Edition, 2021) for the existing manufacturing use (ITE Land Use Code 140) and the proposed warehousing (ITE Land use Code 150) and high-cube cold-storage warehouse use (ITE Land Use Code 157) (see Table 1).

URBAN CROSSROADS

15068-02 TG Letter

Ms. Claudia Jimenez City of Santa Fe Springs August 17, 2022 Page 3 of 6

#### **TABLE 1: TRIP GENERATION RATES**

|                                               | ITE LU |                    | AN    | Л Peak H | our   | PM Peak Hour |       |       |       |
|-----------------------------------------------|--------|--------------------|-------|----------|-------|--------------|-------|-------|-------|
| Land Use <sup>1</sup>                         | Code   | Units <sup>2</sup> | In    | Out      | Total | In           | Out   | Total | Daily |
| Actual Vehicles:                              |        |                    |       |          |       |              |       |       |       |
| Manufacturing <sup>3</sup>                    | 140    | TSF                | 0.517 | 0.163    | 0.680 | 0.229        | 0.511 | 0.740 | 4.750 |
| Passenger Cars                                |        |                    | 0.500 | 0.150    | 0.650 | 0.217        | 0.493 | 0.710 | 4.300 |
| Trucks                                        |        |                    | 0.017 | 0.013    | 0.030 | 0.012        | 0.018 | 0.030 | 0.450 |
| Warehousing <sup>3</sup>                      | 150    | TSF                | 0.131 | 0.039    | 0.170 | 0.050        | 0.130 | 0.180 | 1.710 |
| Passenger Cars                                |        |                    | 0.120 | 0.030    | 0.150 | 0.034        | 0.116 | 0.150 | 1.110 |
| Trucks                                        |        |                    | 0.011 | 0.009    | 0.020 | 0.016        | 0.014 | 0.030 | 0.600 |
| High-Cube Cold Storage Warehouse <sup>3</sup> | 157    | TSF                | 0.085 | 0.025    | 0.110 | 0.034        | 0.086 | 0.120 | 2.120 |
| Passenger Cars                                |        |                    | 0.076 | 0.004    | 0.080 | 0.019        | 0.071 | 0.090 | 1.370 |
| Trucks                                        |        |                    | 0.009 | 0.021    | 0.030 | 0.015        | 0.015 | 0.030 | 0.750 |
| Passenger Car Equivalent (PCE):               |        |                    |       |          |       |              |       |       |       |
| Manufacturing <sup>3</sup>                    | 140    | TSF                | 0.517 | 0.163    | 0.680 | 0.229        | 0.511 | 0.740 | 4.750 |
| Passenger Cars                                |        |                    | 0.500 | 0.150    | 0.650 | 0.217        | 0.493 | 0.710 | 4.300 |
| Trucks (PCE = 2.0)                            |        |                    | 0.034 | 0.026    | 0.060 | 0.025        | 0.035 | 0.060 | 0.900 |
| Warehousing <sup>3</sup>                      | 150    | TSF                | 0.131 | 0.039    | 0.170 | 0.050        | 0.130 | 0.180 | 1.710 |
| Passenger Cars                                |        |                    | 0.120 | 0.030    | 0.150 | 0.034        | 0.116 | 0.150 | 1.110 |
| Trucks (PCE = 2.0)                            |        |                    | 0.022 | 0.018    | 0.040 | 0.032        | 0.028 | 0.060 | 1.200 |
| High-Cube Cold Storage Warehouse <sup>3</sup> | 157    | TSF                | 0.085 | 0.025    | 0.110 | 0.034        | 0.086 | 0.120 | 2.120 |
| Passenger Cars                                |        |                    | 0.076 | 0.004    | 0.080 | 0.019        | 0.071 | 0.090 | 1.370 |
| Trucks (PCE = 2.0)                            |        |                    | 0.018 | 0.042    | 0.060 | 0.030        | 0.030 | 0.060 | 1.500 |

<sup>&</sup>lt;sup>1</sup> Trip Generation & Vehicle Mix Source: Institute of Transportation Engineers (ITE), <u>Trip Generation Manual</u>, Eleventh Edition (2021).

#### The following summarizes the proposed land use and vehicle mix:

- Manufacturing ITE land use code 140 has been used to derive site specific trip generation estimates for both the existing use (41,912 square feet, which includes the office space). A manufacturing facility is an area where the primary activity is the conversion of raw materials or parts into finished products. Size and type of activity may vary substantially from one facility to another. In addition to the actual production of goods, manufacturing facilities generally also have office, warehouse, research, and associated functions. The vehicle mix has been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following South Coast Air Quality Management District (SCAQMD) recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- Warehousing ITE Land Use Code 150 has been used to derive site specific trip generation estimates for the proposed Project (25% of the total square footage, or 24,982 square feet). A warehouse is primarily devoted to the storage of materials but may also include office and maintenance areas. The vehicle mix has also been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.

URBAN CROSSROADS

15068-02 TG Letter

<sup>&</sup>lt;sup>2</sup> TSF = thousand square fee

<sup>&</sup>lt;sup>3</sup> Truck Mix: South Coast Air Quality Management District's (SCAQMD) recommended truck mix, by axle type. Normalized % - Without Cold Storage: 16.7% 2-Axle trucks, 20.7% 3-Axle trucks, 62.6% 4-Axle trucks. Normalized % - With Cold Storage: 34.7% 2-Axle trucks, 11.0% 3-Axle trucks, 54.3% 4-Axle trucks.

Ms. Claudia Jimenez City of Santa Fe Springs August 17, 2022 Page 4 of 6

• High-Cube Cold Storage Warehouse – ITE land use code 157 has been used to derive site specific trip generation estimates for the proposed Project (75% of the total square footage, or 74,947 square feet). High-cube cold storage warehouses include warehouses characterized by the storage and/or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. High-cube cold storage warehouses are facilities typified by temperature-controlled environments for frozen food or other perishable products. The High-Cube Cold Storage Warehouse vehicle mix (passenger cars versus trucks) has been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 34.7%; 3-Axle = 11.0%; 4+-Axle = 54.3%.

The trip generation summary illustrating daily, and peak hour trip generation estimates for the existing use in actual and passenger car equivalent (PCE) vehicles are shown on Table 2. As shown in Table 2, the existing use generates a total of 202 two-way trips per day with 34 AM peak hour trips and 37 PM peak hour trips (in actual vehicles). In comparison, the existing use generates a total of 222 PCE two-way trips per day with 34 PCE AM peak hour trips and 37 PCE PM peak hour trips (see also Table 2).

PCE factors were applied to the trip generation rates for heavy trucks (large 2-axles, 3-axles, 4+axles). PCEs allow the typical "real-world" mix of vehicle types to be represented as a single, standardized unit, such as the passenger car, to be used for the purposes of capacity and level of service analyses. The PCE factors are consistent with that used for other projects within the City (PCE factor of 2.0 for all heavy trucks).

**TABLE 2: EXISTING TRIP GENERATION** 

|                                 | Quantity Units <sup>1</sup> | 1A | M Peak H | k Hour PM Pea |    |     | eak Hour |       |
|---------------------------------|-----------------------------|----|----------|---------------|----|-----|----------|-------|
| Existing Land Use               |                             | In | Out      | Total         | ln | Out | Total    | Daily |
| Actual Vehicles:                |                             |    |          |               |    |     |          |       |
| Manufacturing                   | 41.912 TSF                  |    |          |               |    |     |          |       |
| Passenger Cars:                 |                             | 21 | 7        | 28            | 10 | 21  | 31       | 182   |
| Total Trucks:                   |                             | 3  | 3        | 6             | 3  | 3   | 6        | 20    |
| Total Trips (Actual Vehicles)   |                             | 24 | 10       | 34            | 13 | 24  | 37       | 202   |
| Passenger Car Equivalent (PCE): |                             |    |          |               |    |     |          |       |
| Manufacturing                   | 41.912 TSF                  |    |          |               |    |     |          |       |
| Passenger Cars:                 |                             | 21 | 7        | 28            | 10 | 21  | 31       | 182   |
| Total Trucks (PCE):             |                             | 3  | 3        | 6             | 3  | 3   | 6        | 40    |
| Total Trips (PCE)               |                             | 24 | 10       | 34            | 13 | 24  | 37       | 222   |
| 1 TSF = thousand square feet    |                             |    |          |               |    |     |          |       |

#### **PROPOSED PROJECT**

The trip generation rates used for this analysis are based upon information collected by the ITE as provided in their <u>Trip Generation Manual</u> (11<sup>th</sup> Edition, 2021) are shown previously on Table 1. The trip generation summary illustrating daily, and peak hour trip generation estimates for the proposed Project in actual and PCE vehicles are shown on Table 3 based on 74,947 square feet of high-cube cold storage warehouse use (75%) and 24,982 square feet of warehousing use (25%). As shown in Table 3, the proposed Project is anticipated to generate a total of 204 two-way trips per day with 15 AM peak hour trips and 14 PM peak hour trips (in actual vehicles). In comparison,

URBAN CROSSROADS

15068-02 TG Letter

Ms. Claudia Jimenez City of Santa Fe Springs August 17, 2022 Page 5 of 6

the proposed Project is anticipated to generate a total of 274 PCE two-way trips per day with 16 PCE AM peak hour trips and 16 PCE PM peak hour trips (see also Table 4).

**TABLE 3: PROJECT TRIP GENERATION SUMMARY** 

|                                 |                             | AM Peak Hour |     |       | PM Peak Hour |     |       |       |
|---------------------------------|-----------------------------|--------------|-----|-------|--------------|-----|-------|-------|
| Project Land Use                | Quantity Units <sup>1</sup> | In           | Out | Total | In           | Out | Total | Daily |
| Actual Vehicles:                |                             |              |     |       |              |     |       |       |
| Warehouse (25%)                 | 24.982 TSF                  |              |     |       |              |     |       |       |
| Passenger Cars:                 |                             | 3            | 1   | 4     | 1            | 3   | 4     | 28    |
| Total Trucks:                   |                             | 1            | 1   | 2     | 1            | 1   | 2     | 16    |
| High-Cube Cold Storage (75%)    | 74.947 TSF                  |              |     |       |              |     |       |       |
| Passenger Cars:                 |                             | 6            | 0   | 6     | 1            | 5   | 6     | 104   |
| Total Trucks:                   |                             | 1            | 2   | 3     | 1            | 1   | 2     | 56    |
| Total Trips (Actual Vehicles)   |                             | 11           | 4   | 15    | 4            | 10  | 14    | 204   |
| Passenger Car Equivalent (PCE): |                             |              |     |       |              |     |       |       |
| Warehouse (25%)                 | 24.982 TSF                  |              |     |       |              |     |       |       |
| Passenger Cars:                 |                             | 3            | 1   | 4     | 1            | 3   | 4     | 28    |
| Total Trucks (PCE):             |                             | 1            | 1   | 2     | 1            | 1   | 2     | 30    |
| High-Cube Cold Storage (75%)    | 74.947 TSF                  |              |     |       |              |     |       |       |
| Passenger Cars:                 |                             | 6            | 0   | 6     | 1            | 5   | 6     | 104   |
| Total Trucks (PCE):             |                             | 1            | 3   | 4     | 2            | 2   | 4     | 112   |
| Total Trips (PCE)               |                             | 11           | 5   | 16    | 5            | 11  | 16    | 274   |

<sup>&</sup>lt;sup>1</sup> TSF = thousand square feet

#### TRIP GENERATION COMPARISON

Table 4 shows the trip generation comparison between the existing and proposed use. The resulting net new trips are identified at the bottom of Table 4. The trip generation comparison is based on PCE as the existing and proposed uses are truck-intensive uses (since any required operations analysis would use the PCE-based trip generation). As shown on Table 4, the Project is anticipated to generate 52 net new two-way trips per day with a net reduction of 18 AM peak hour trips and net reduction of 21 PM peak hour trips (in PCE).

URBAN CROSSROADS

15068-02 TG Letter

Ms. Claudia Jimenez City of Santa Fe Springs August 17, 2022 Page 6 of 6

#### **TABLE 4: TRIP GENERATION COMPARISON**

|                                    | AM Peak Hour |     |       | РМ |     |       |       |
|------------------------------------|--------------|-----|-------|----|-----|-------|-------|
| Land Use                           | In           | Out | Total | In | Out | Total | Daily |
| Proposed Project                   |              |     |       |    |     |       |       |
| Passenger Cars:                    | 9            | 1   | 10    | 2  | 8   | 10    | 132   |
| Total Truck Trips (PCE):           | 2            | 4   | 6     | 3  | 3   | 6     | 142   |
| Total Trips (PCE) <sup>1</sup>     | 11           | 5   | 16    | 5  | 11  | 16    | 274   |
| Existing Use                       |              |     |       |    |     |       |       |
| Passenger Cars:                    | 21           | 7   | 28    | 10 | 21  | 31    | 182   |
| Total Truck Trips (PCE):           | 3            | 3   | 6     | 3  | 3   | 6     | 40    |
| Total Trips (PCE) <sup>1</sup>     | 24           | 10  | 34    | 13 | 24  | 37    | 222   |
| Variance                           |              |     |       |    |     |       |       |
| Passenger Cars:                    | -12          | -6  | -18   | -8 | -13 | -21   | -50   |
| Total Truck Trips (PCE):           | -1           | 1   | 0     | 0  | 0   | 0     | 102   |
| Total Net Trips (PCE) <sup>1</sup> | -13          | -5  | -18   | -8 | -13 | -21   | 52    |

<sup>&</sup>lt;sup>1</sup> Total Trips = Passenger Cars + Truck Trips.

#### **FINDINGS**

The proposed Project on its own is anticipated to generate fewer than 50 peak hour trips and therefore would contribute fewer than 50 peak hour trips to any study area intersection. With the reductions for the existing uses on the site, the Project would generate a net reduction in trips. As such, peak hour intersection operations analysis does not appear to be necessary in addition to the trip generation information disclosed in this assessment.

If you have any questions or comments, I can be reached at <u>cso@urbanxraods.com</u>. Respectfully submitted,

URBAN CROSSROADS, INC.

Charlene So, PE Principal

URBAN CROSSROADS

15068-02 TG Letter



URBAN CROSSROADS 15068-02 TG Letter

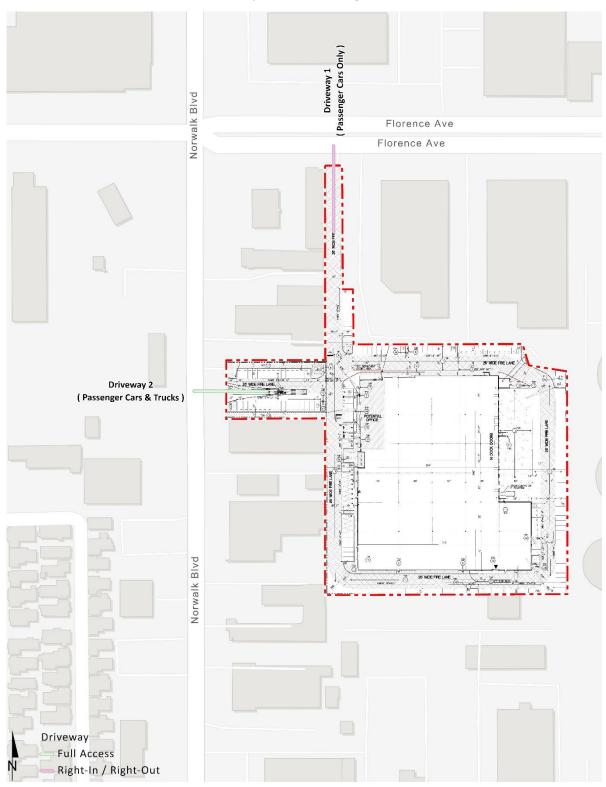


**DATE:** March 9, 2023

**TO:** Claudia Jimenez, City of Santa Fe Springs **FROM:** Charlene So, Urban Crossroads, Inc.

**JOB NO:** 15068-03 TA Memo




# GLC SANTA FE SPRINGS BUILDING 4 FOCUSED TRAFFIC ASSESSMENT

Urban Crossroads, Inc. is pleased to provide the following Focused Traffic Assessment for the GLC Santa Fe Springs Building 4 development (**Project**), which is located at 10840 Norwalk Boulevard in the City of Santa Fe Springs. The following focused traffic assessment identifies the Project trip generation, proposed trip distribution patterns, site access, observed peak hour queuing, and truck turns.

#### **PROPOSED PROJECT**

The Project includes the development a of a new 99,847 square foot warehouse building, which consists of 3,000 square feet of office space, 5,200 square feet of mezzanine space, 91,287 square feet of warehouse space, and a 360 square foot pump area (see Exhibit 1). The proposed Project will replace an existing oil well operating and maintenance business, which consists of a 12,232 square foot office building and 29,680 square feet of maintenance/operations buildings. There was a 30,500 square foot metal canopy that has already been demolished. Access to the site will be accommodated via Florence Avenue to the north and Norwalk Boulevard to the west. Driveway 1 on Florence Avenue would serve passenger cars/small single unit trucks while Driveway 2 on Norwalk Boulevard would serve passenger cars and heavy trucks.

**EXHIBIT 1: PRELIMINARY SITE PLAN** 



#### TRIP GENERATION

#### **EXISTING TRAFFIC**

The proposed Project will replace an existing oil well operating and maintenance business, which consists of a 12,232 square foot office building and 29,680 square feet of maintenance/operations buildings. In an effort to understand the existing traffic associated with the current uses, the trip generation rates used for this analysis are based upon information collected by the Institute of Transportation Engineers (ITE) as provided in their <u>Trip Generation Manual</u> (11<sup>th</sup> Edition, 2021) for the existing manufacturing use (ITE Land Use Code 140) and the proposed warehousing (ITE Land use Code 150) and high-cube cold-storage warehouse use (ITE Land Use Code 157) (see Table 1).

**TABLE 1: TRIP GENERATION RATES** 

|                                               | ITE LU |                    | AM Peak Hour |       | PM Peak Hour |       |       |       |       |
|-----------------------------------------------|--------|--------------------|--------------|-------|--------------|-------|-------|-------|-------|
| Land Use <sup>1</sup>                         | Code   | Units <sup>2</sup> | In           | Out   | Total        | In    | Out   | Total | Daily |
| Actual Vehicles:                              |        |                    |              |       |              |       |       |       |       |
| Manufacturing <sup>3</sup>                    | 140    | TSF                | 0.517        | 0.163 | 0.680        | 0.229 | 0.511 | 0.740 | 4.750 |
| Passenger Cars                                |        |                    | 0.500        | 0.150 | 0.650        | 0.217 | 0.493 | 0.710 | 4.300 |
| Trucks                                        |        |                    | 0.017        | 0.013 | 0.030        | 0.012 | 0.018 | 0.030 | 0.450 |
| Warehousing <sup>3</sup>                      | 150    | TSF                | 0.131        | 0.039 | 0.170        | 0.050 | 0.130 | 0.180 | 1.710 |
| Passenger Cars                                |        |                    | 0.120        | 0.030 | 0.150        | 0.034 | 0.116 | 0.150 | 1.110 |
| Trucks                                        |        |                    | 0.011        | 0.009 | 0.020        | 0.016 | 0.014 | 0.030 | 0.600 |
| High-Cube Cold Storage Warehouse <sup>3</sup> | 157    | TSF                | 0.085        | 0.025 | 0.110        | 0.034 | 0.086 | 0.120 | 2.120 |
| Passenger Cars                                |        |                    | 0.076        | 0.004 | 0.080        | 0.019 | 0.071 | 0.090 | 1.370 |
| Trucks                                        |        |                    | 0.009        | 0.021 | 0.030        | 0.015 | 0.015 | 0.030 | 0.750 |
| Passenger Car Equivalent (PCE):               |        |                    |              |       |              |       |       |       |       |
| Manufacturing <sup>3</sup>                    | 140    | TSF                | 0.517        | 0.163 | 0.680        | 0.229 | 0.511 | 0.740 | 4.750 |
| Passenger Cars                                |        |                    | 0.500        | 0.150 | 0.650        | 0.217 | 0.493 | 0.710 | 4.300 |
| Trucks (PCE = 2.0)                            |        |                    | 0.034        | 0.026 | 0.060        | 0.025 | 0.035 | 0.060 | 0.900 |
| Warehousing <sup>3</sup>                      | 150    | TSF                | 0.131        | 0.039 | 0.170        | 0.050 | 0.130 | 0.180 | 1.710 |
| Passenger Cars                                |        |                    | 0.120        | 0.030 | 0.150        | 0.034 | 0.116 | 0.150 | 1.110 |
| Trucks (PCE = 2.0)                            |        |                    | 0.022        | 0.018 | 0.040        | 0.032 | 0.028 | 0.060 | 1.200 |
| High-Cube Cold Storage Warehouse <sup>3</sup> | 157    | TSF                | 0.085        | 0.025 | 0.110        | 0.034 | 0.086 | 0.120 | 2.120 |
| Passenger Cars                                |        |                    | 0.076        | 0.004 | 0.080        | 0.019 | 0.071 | 0.090 | 1.370 |
| Trucks (PCE = 2.0)                            |        |                    | 0.018        | 0.042 | 0.060        | 0.030 | 0.030 | 0.060 | 1.500 |

<sup>&</sup>lt;sup>1</sup> Trip Generation & Vehicle Mix Source: Institute of Transportation Engineers (ITE), <u>Trip Generation Manual</u>, Eleventh Edition (2021).



<sup>&</sup>lt;sup>2</sup> TSF = thousand square feet

<sup>&</sup>lt;sup>3</sup> Truck Mix: South Coast Air Quality Management District's (SCAQMD) recommended truck mix, by axle type. Normalized % - Without Cold Storage: 16.7% 2-Axle trucks, 20.7% 3-Axle trucks, 62.6% 4-Axle trucks. Normalized % - With Cold Storage: 34.7% 2-Axle trucks, 11.0% 3-Axle trucks, 54.3% 4-Axle trucks.

The following summarizes the proposed land use and vehicle mix:

- Manufacturing ITE land use code 140 has been used to derive site specific trip generation estimates for both the existing use (41,912 square feet, which includes the office space). A manufacturing facility is an area where the primary activity is the conversion of raw materials or parts into finished products. Size and type of activity may vary substantially from one facility to another. In addition to the actual production of goods, manufacturing facilities generally also have office, warehouse, research, and associated functions. The vehicle mix has been obtained from the ITE's latest Trip Generation Manual. The truck percentages were further broken down by axle type per the following South Coast Air Quality Management District (SCAQMD) recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- Warehousing ITE Land Use Code 150 has been used to derive site specific trip generation estimates for the proposed Project (25% of the total square footage, or 24,982 square feet). A warehouse is primarily devoted to the storage of materials but may also include office and maintenance areas. The vehicle mix has also been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- High-Cube Cold Storage Warehouse ITE land use code 157 has been used to derive site specific trip generation estimates for the proposed Project (75% of the total square footage, or 74,947 square feet). High-cube cold storage warehouses include warehouses characterized by the storage and/or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. High-cube cold storage warehouses are facilities typified by temperature-controlled environments for frozen food or other perishable products. The High-Cube Cold Storage Warehouse vehicle mix (passenger cars versus trucks) has been obtained from the ITE's latest Trip Generation Manual. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 34.7%; 3-Axle = 11.0%; 4+-Axle = 54.3%.

The trip generation summary illustrating daily, and peak hour trip generation estimates for the existing use in actual and passenger car equivalent (PCE) vehicles are shown on Table 2. As shown in Table 2, the existing use generates a total of 202 two-way trips per day with 34 AM peak hour trips and 37 PM peak hour trips (in actual vehicles). In comparison, the existing use generates a total of 222 PCE two-way trips per day with 34 PCE AM peak hour trips and 37 PCE PM peak hour trips (see also Table 2).

PCE factors were applied to the trip generation rates for heavy trucks (large 2-axles, 3-axles, 4+axles). PCEs allow the typical "real-world" mix of vehicle types to be represented as a single, standardized unit, such as the passenger car, to be used for the purposes of capacity and level of service analyses. The PCE factors are consistent with that used for other projects within the City (PCE factor of 2.0 for all heavy trucks).

**TABLE 2: EXISTING TRIP GENERATION** 

|                                 |                             | AM Peak Hour |     |       | PM Peak Hour |     |       |       |
|---------------------------------|-----------------------------|--------------|-----|-------|--------------|-----|-------|-------|
| Existing Land Use               | Quantity Units <sup>1</sup> | In           | Out | Total | In           | Out | Total | Daily |
| Actual Vehicles:                |                             |              |     |       |              |     |       |       |
| Manufacturing                   | 41.912 TSF                  |              |     |       |              |     |       |       |
| Passenger Cars:                 |                             | 21           | 7   | 28    | 10           | 21  | 31    | 182   |
| Total Trucks:                   |                             | 3            | 3   | 6     | 3            | 3   | 6     | 20    |
| Total Trips (Actual Vehicles)   |                             | 24           | 10  | 34    | 13           | 24  | 37    | 202   |
| Passenger Car Equivalent (PCE): |                             |              |     |       |              |     |       |       |
| Manufacturing                   | 41.912 TSF                  |              |     |       |              |     |       |       |
| Passenger Cars:                 |                             | 21           | 7   | 28    | 10           | 21  | 31    | 182   |
| Total Trucks (PCE):             |                             | 3            | 3   | 6     | 3            | 3   | 6     | 40    |
| Total Trips (PCE)               |                             | 24           | 10  | 34    | 13           | 24  | 37    | 222   |

<sup>&</sup>lt;sup>1</sup> TSF = thousand square feet

#### **PROPOSED PROJECT**

The trip generation rates used for this analysis are based upon information collected by the ITE as provided in their <u>Trip Generation Manual</u> (11<sup>th</sup> Edition, 2021) are shown previously on Table 1. The trip generation summary illustrating daily, and peak hour trip generation estimates for the proposed Project in actual and PCE vehicles are shown in Table 3 based on 74,885 square feet of high-cube cold storage warehouse use (75%) and 24,962 square feet of warehousing use (25%). As shown in Table 3, the proposed Project is anticipated to generate a total of 204 two-way trips per day with 15 AM peak hour trips and 14 PM peak hour trips (in actual vehicles). In comparison, the proposed Project is anticipated to generate a total of 274 PCE two-way trips per day with 16 PCE AM peak hour trips and 16 PCE PM peak hour trips (see also Table 4).

**TABLE 3: PROJECT TRIP GENERATION SUMMARY** 

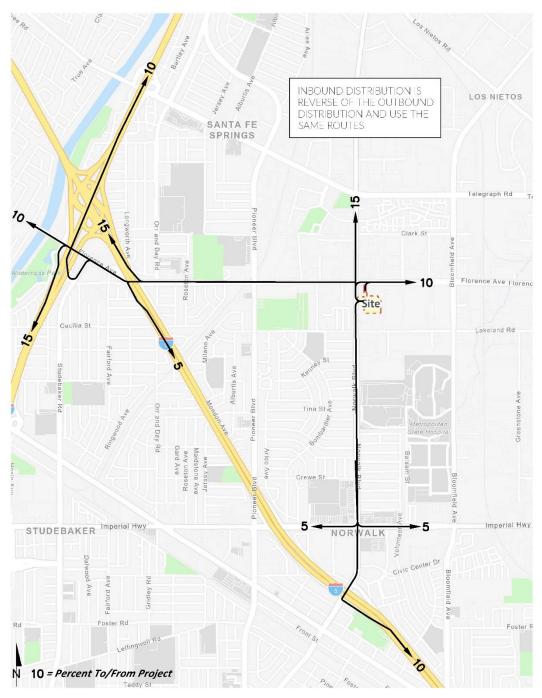
|                                 |                             | AM Peak Hour |     | PM Peak Hour |    |     |       |       |
|---------------------------------|-----------------------------|--------------|-----|--------------|----|-----|-------|-------|
| Project Land Use                | Quantity Units <sup>1</sup> | In           | Out | Total        | In | Out | Total | Daily |
| Actual Vehicles:                |                             |              |     |              |    |     |       |       |
| Warehouse (25%)                 | 24.962 TSF                  |              |     |              |    |     |       |       |
| Passenger Cars:                 |                             | 3            | 1   | 4            | 1  | 3   | 4     | 28    |
| Total Trucks:                   |                             | 1            | 1   | 2            | 1  | 1   | 2     | 16    |
| High-Cube Cold Storage (75%)    | 74.885 TSF                  |              |     |              |    |     |       |       |
| Passenger Cars:                 |                             | 6            | 0   | 6            | 1  | 5   | 6     | 104   |
| Total Trucks:                   |                             | 1            | 2   | 3            | 1  | 1   | 2     | 56    |
| Total Trips (Actual Vehicles)   |                             | 11           | 4   | 15           | 4  | 10  | 14    | 204   |
| Passenger Car Equivalent (PCE): |                             |              |     |              |    |     |       |       |
| Warehouse (25%)                 | 24.962 TSF                  |              |     |              |    |     |       |       |
| Passenger Cars:                 |                             | 3            | 1   | 4            | 1  | 3   | 4     | 28    |
| Total Trucks (PCE):             |                             | 1            | 1   | 2            | 1  | 1   | 2     | 30    |
| High-Cube Cold Storage (75%)    | 74.885 TSF                  |              |     |              |    |     |       |       |
| Passenger Cars:                 |                             | 6            | 0   | 6            | 1  | 5   | 6     | 104   |
| Total Trucks (PCE):             |                             | 1            | 3   | 4            | 2  | 2   | 4     | 112   |
| Total Trips (PCE)               |                             | 11           | 5   | 16           | 5  | 11  | 16    | 274   |

<sup>&</sup>lt;sup>1</sup> TSF = thousand square feet

#### TRIP GENERATION COMPARISON

Table 4 shows the trip generation comparison between the existing and proposed use. The resulting net new trips are identified at the bottom of Table 4. The trip generation comparison is based on PCE as the existing and proposed uses are truck-intensive uses (since any required operations analysis would use the PCE-based trip generation). As shown on Table 4, the Project is anticipated to generate 52 net new two-way trips per day with a net reduction of 18 AM peak hour trips and net reduction of 21 PM peak hour trips (in PCE).

**TABLE 4: TRIP GENERATION COMPARISON** 


|                                    | AM  | Peak F | lour  | PM | Peak F | lour  |       |
|------------------------------------|-----|--------|-------|----|--------|-------|-------|
| Land Use                           | In  | Out    | Total | In | Out    | Total | Daily |
| Proposed Project                   |     |        |       |    |        |       |       |
| Passenger Cars:                    | 9   | 1      | 10    | 2  | 8      | 10    | 132   |
| Total Truck Trips (PCE):           | 2   | 4      | 6     | 3  | 3      | 6     | 142   |
| Total Trips (PCE) <sup>1</sup>     | 11  | 5      | 16    | 5  | 11     | 16    | 274   |
| Existing Use                       |     |        |       |    |        |       |       |
| Passenger Cars:                    | 21  | 7      | 28    | 10 | 21     | 31    | 182   |
| Total Truck Trips (PCE):           | 3   | 3      | 6     | 3  | 3      | 6     | 40    |
| Total Trips (PCE) <sup>1</sup>     | 24  | 10     | 34    | 13 | 24     | 37    | 222   |
| Variance                           |     |        |       |    |        |       |       |
| Passenger Cars:                    | -12 | -6     | -18   | -8 | -13    | -21   | -50   |
| Total Truck Trips (PCE):           | -1  | 1      | 0     | 0  | 0      | 0     | 102   |
| Total Net Trips (PCE) <sup>1</sup> | -13 | -5     | -18   | -8 | -13    | -21   | 52    |


<sup>&</sup>lt;sup>1</sup> Total Trips = Passenger Cars + Truck Trips.

#### TRIP DISTRIBUTONS

The Project trip distribution and assignment process represents the directional orientation of traffic to and from the Project site. Trip distribution is the process of identifying the probable destinations, directions or traffic routes that will be utilized by Project traffic. The potential interaction between the planned land uses and surrounding regional access routes are considered, to identify the route where the Project traffic would distribute. Separate distributions have been developed for passenger cars and trucks. Exhibits 2 and 3 illustrate the passenger car and truck trip distribution patterns through the study area intersections, respectively. Truck distribution patterns will be based on allowable City truck routes, proximity to the freeway system, and the Project Applicant's input on percentage of traffic oriented to the Port of Long Beach or other destination. As such, Project truck traffic is directed to the I-5 Freeway and I-605 Freeway via Norwalk Boulevard, Telegraph Road, and Florence Avenue.

**EXHIBIT 2: PROJECT PASSENGER CAR TRIP DISTRIBUTION** 





**EXHIBIT 3: PROJECT TRUCK TRIP DISTRIBUTION** 

#### INTERSECTION OPERATIONS

The intersection operations analysis is based on the traffic volumes observed during the peak hour conditions using traffic count data collected on December 6, 2022 when local schools were in session and operating on normal bell schedules (timeframe of counts were not affected by the

street sweeping schedule along Florence Avenue). The following peak hours were selected for analysis pursuant to discussions with City staff:

- Weekday AM Peak Hour (peak hour between 6:00 AM and 9:00 AM)
- Weekday PM Peak Hour (peak hour between 4:00 PM and 7:00 PM)

The raw manual peak hour turning movement traffic count data sheets are included in Attachment A.

Existing peak hour traffic operations have been evaluated for the study area intersections based on both the Highway Capacity Manual (HCM) methodology (6<sup>th</sup> Edition). HCM analysis results are expressed as delay in seconds. The intersection operations analysis results are summarized in Table 5 which indicates that the intersection of Norwalk Boulevard and Florence Avenue is currently operating at an acceptable level of service (LOS) during the peak hours. The intersection operations analysis worksheets are included in Attachment B.

**TABLE 5: INTERSECTION ANALYSIS FOR EXISTING CONDITIONS** 

|                              |                      | De   | lay <sup>1</sup> | Lev | el of |
|------------------------------|----------------------|------|------------------|-----|-------|
|                              | Traffic              | (se  | cs.)             | Sen | vice  |
| # Intersection               | Control <sup>2</sup> | AM   | PM               | AM  | PM    |
| 1 Norwalk Bl. & Florence Av. | TS                   | 23.4 | 34.5             | C   | C     |

Per the Highway Capacity Manual (6th Edition), overall average intersection delay and level of service are shown for intersections with a traffic signal.

#### **EXISTING QUEUING**

Although the peak hour intersection operations suggests that the intersection operates with average delays that are considered acceptable by City standards, there could still be periodic queuing issues occurring at the intersections. As such, the peak hour queues were observed specifically for the northbound left turn movement at the intersection of Norwalk Boulevard and Florence Avenue during the peak hours of 7:30-8:30 AM and 4:15-5:15 PM. The purpose of reviewing the queues in this movement is excessive queues in this lane may spill back and prevent vehicles (specifically trucks) from entering the site at the proposed driveway on Norwalk Boulevard.

The traffic progression analysis tool and HCM intersection analysis program, Synchro, has been used to assess the potential deficiencies/needs of the northbound left turn pocket at Norwalk Boulevard and Florence Avenue. Storage (turn-pocket) length recommendations at the ramps have been based upon the 95<sup>th</sup> percentile queue resulting from the Synchro progression analysis. The footnote from the Synchro output sheets indicates if the 95<sup>th</sup> percentile cycle exceeds capacity. As shown in Attachment C, the highest reported queue occurs in the PM peak hour with 203-feet (95<sup>th</sup> percentile queue).

<sup>&</sup>lt;sup>2</sup> TS = Traffic Signal

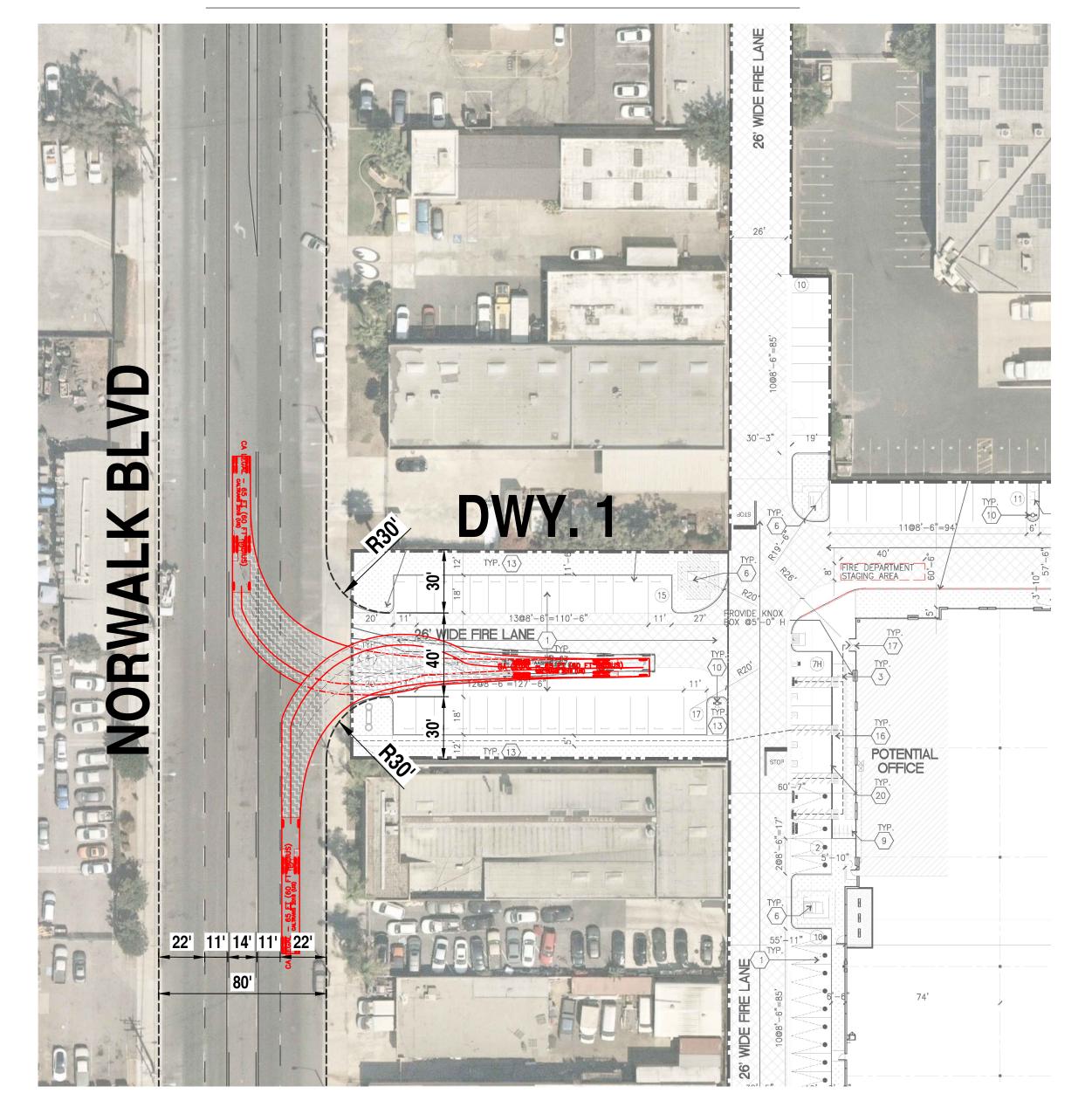
Since the queue from Synchro is based on a progression analysis tool, the video for the segment of Norwalk Boulevard south of Florence Avenue has also been reviewed for the peak hours of 7:30-8:30 AM and 4:15-5:15 PM. Below is a summary of the observations.

- Between 7:30-8:30 AM, there were 6 separate instances where the northbound left turn
  queue at Norwalk Boulevard and Florence Avenue exceeded the striped 200-feet of
  storage and was within the transition. However, these queues cleared on the green for
  the left turn movement with no residual queues at the end of each cycle. No queues were
  observed extending beyond the transition area.
- Between 4:15-5:15 PM, there were 4 separate instances where the northbound left turn
  queue at Norwalk Boulevard and Florence Avenue exceeded the striped 200-feet of
  storage and was within the transition. However, during one of those instances, the queue
  was well into the painted median approximately 200-feet further south. This occurred
  during an approximately 20-minute period between 4:36 PM and 4:57 PM. However, the
  queues for the other three instances cleared during the green time.
- for the left turn movement with no residual queues at the end of each cycle. No queues were observed extending beyond the transition area for these other instances during the peak hour.

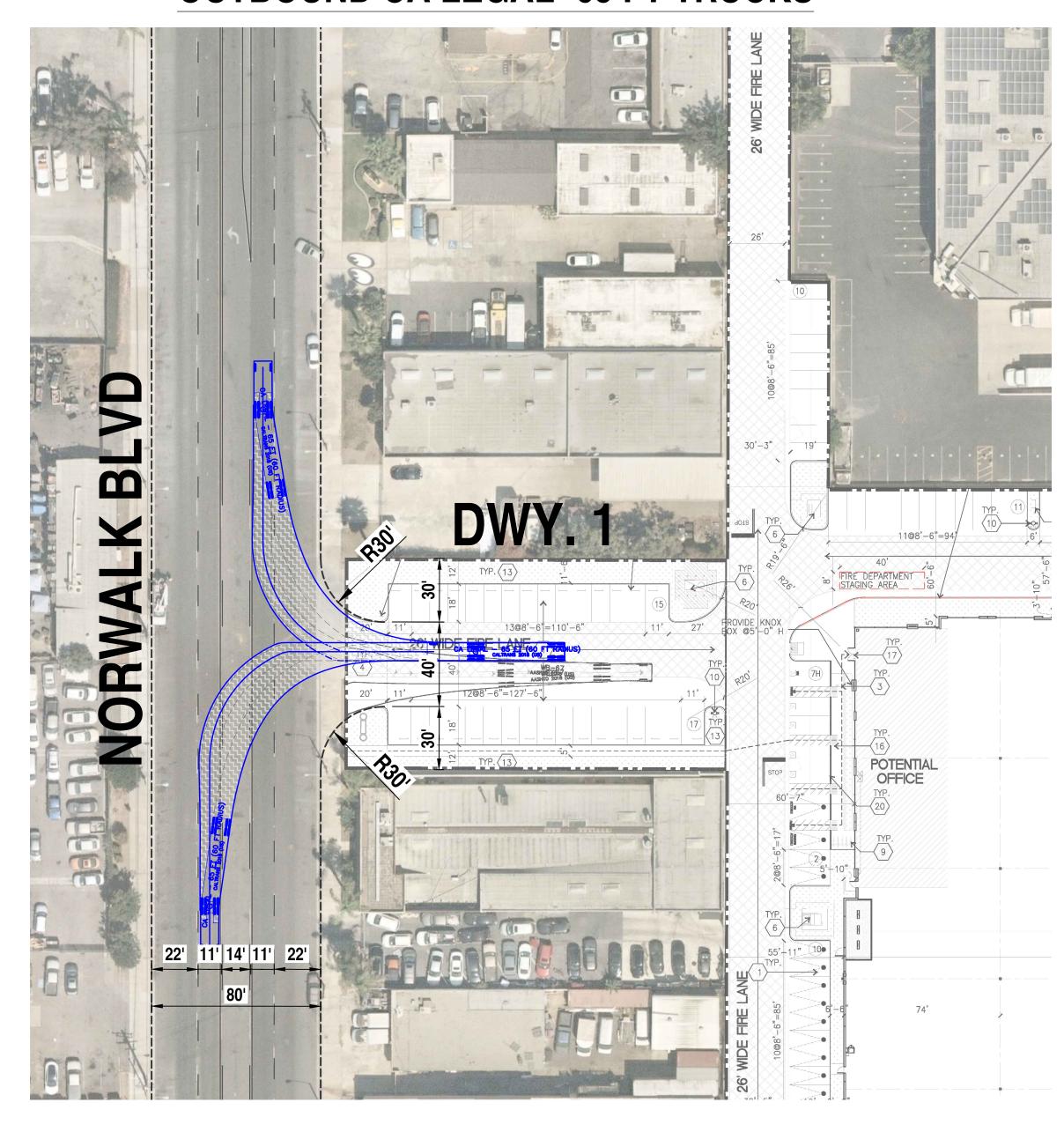
It should be noted that field review observations indicate that, if clear, vehicles are entering the painted median area on approach to the intersection of Norwalk Boulevard and Florence Avenue in order to avoid the queues in the northbound through lanes.

#### SITE ACCESS & TRUCK TURNS

Due to the typical wide turning radius of large trucks, a truck turning template has been overlaid on the site plan the proposed driveway on Norwalk Boulevard in order to determine appropriate curb radii and to verify that trucks will have sufficient space to execute turning maneuvers (see attached Exhibit A). A <u>California Street Legal – 65-foot</u> truck (45-foot trailer) has been utilized for the purposes of this assessment. As shown on Exhibit A, the driveway on Norwalk Boulevard is anticipated to accommodate the ingress and egress of heavy trucks as currently designed. Although not utilized by heavy trucks, Exhibit B shows the truck turns at Driveway 1 on Florence Avenue for single-unit trucks that could potentially use this access. There are no turning issues with the proposed design of Driveway 1.


#### **FINDINGS**

Based on the trip generation shown on Table 3 for the Project, it is anticipated that 1-2 trucks could be entering the site during the peak hours. Upon field review of the peak hour operations, it is anticipated that existing PM peak hour queues may block the Project intersection and prevent vehicles from entering into the Project site during a 20 to 30 minute period during the PM peak hour only. Given the limited period during the PM peak hour in which there is a minimal impact to the Project access, no additional mitigation has been recommended.


If you have any questions or comments, I can be reached at <a href="mailto:cso@urbanxroads.com">cso@urbanxroads.com</a>.



## **INBOUND CA LEGAL- 65 FT TRUCKS**



## **OUTBOUND CA LEGAL- 65 FT TRUCKS**



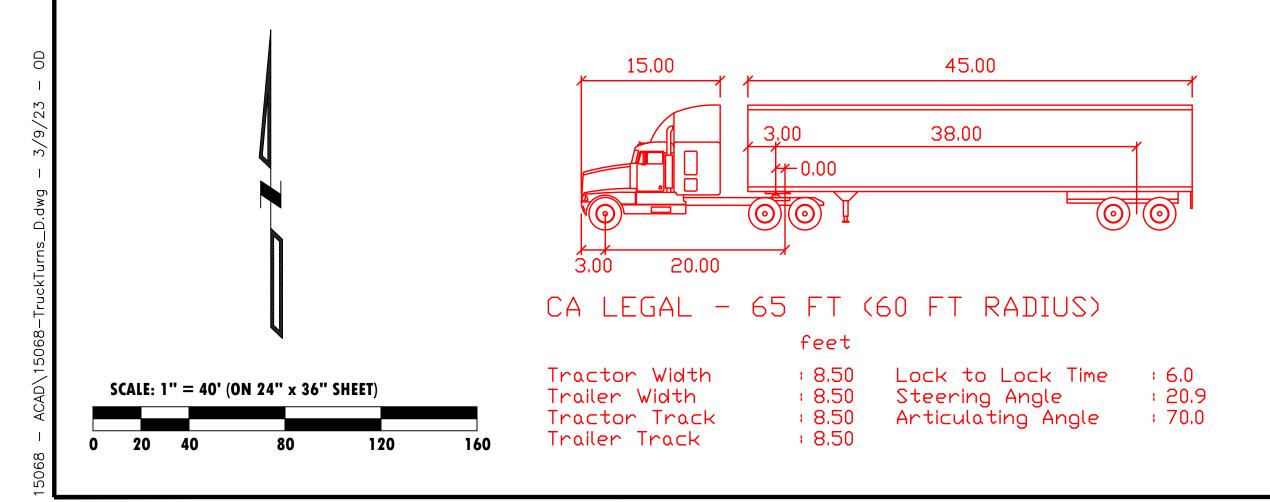
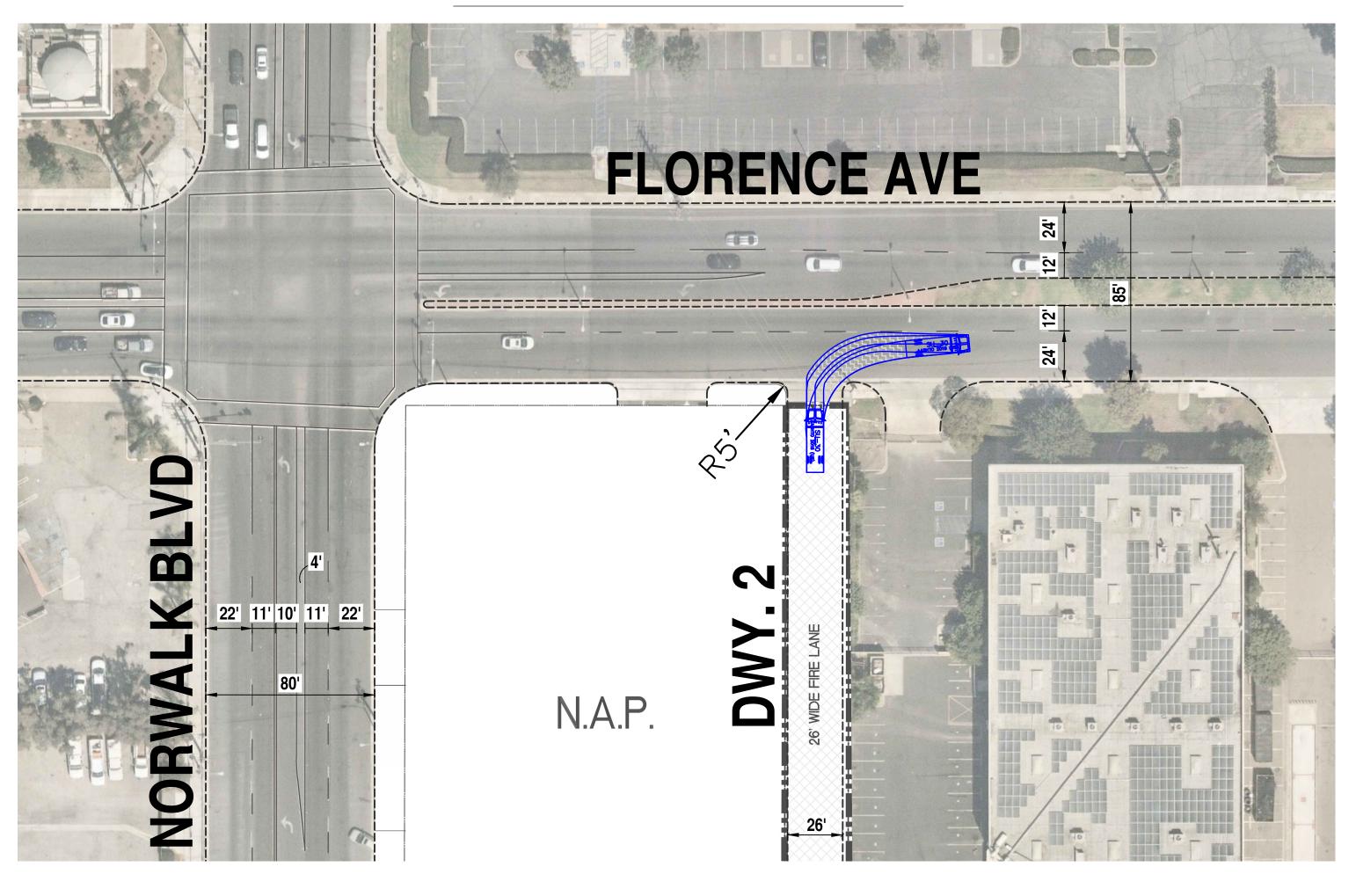



EXHIBIT A: PROJECT DRIVEWAY AT NORWALK BLVD TRUCK TURNING TEMPLATE






## **INBOUND SU-30 TRUCKS**

# 

## **OUTBOUND SU-30 TRUCKS**



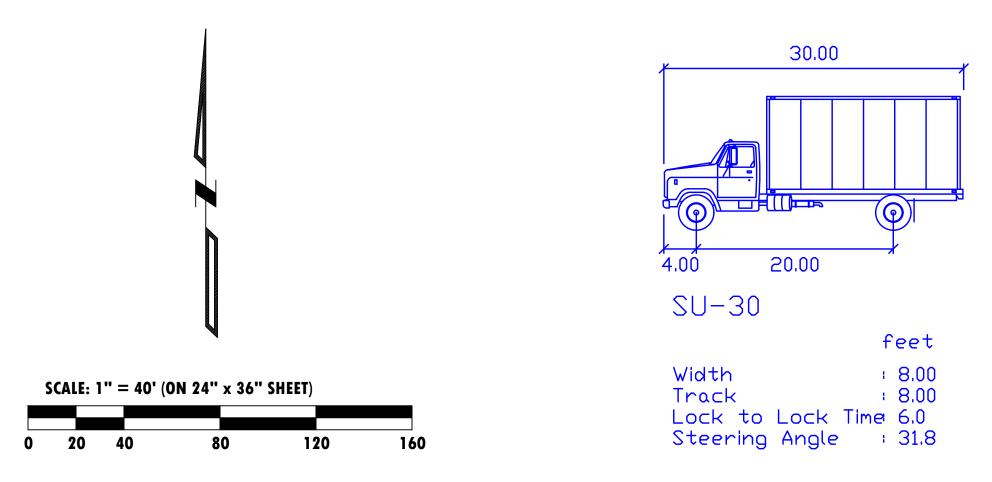



EXHIBIT B: PROJECT DRIVEWAY AT FLORENCE AVE TRUCK TURNING TEMPLATE

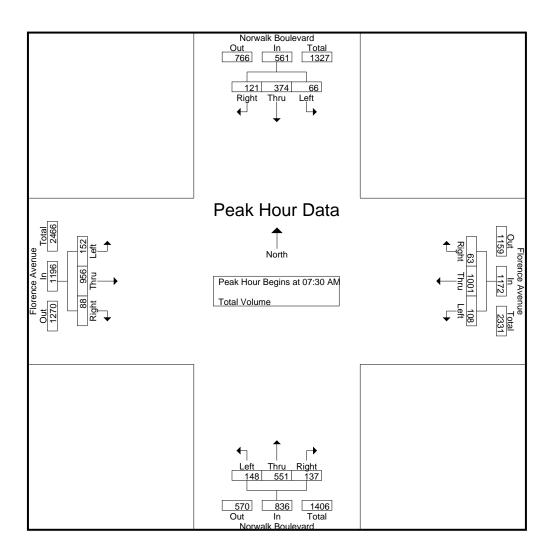


WWW.URBANXROADS.CO TELEPHONE # 949-660-199

## ATTACHMENT A INTERSECTION COUNTS – DECEMBER 2022

City of Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue Weather: Clear File Name: 01\_SFS\_Nor\_Flo\_AM

Site Code : 221076 Start Date : 12/6/2022


Page No : 1

Groups Printed- Total Volume

|             |      |      |                |      |            |      |      |                |      | Groups     | Printed |                | volume         |      |            |      |      |        |       |            | 1            |              |            |
|-------------|------|------|----------------|------|------------|------|------|----------------|------|------------|---------|----------------|----------------|------|------------|------|------|--------|-------|------------|--------------|--------------|------------|
|             |      |      | alk Bou        |      |            |      | Flor | ence Av        | enue |            |         |                | alk Bou        |      |            |      | Flor | ence A | /enue |            |              |              |            |
|             |      | So   | <u>outhbou</u> | ınd  |            |      | V    | <u>Vestbou</u> | nd   |            |         | N <sub>1</sub> | <u>orthbou</u> | nd   |            |      | E    | astbou | nd    |            |              |              |            |
| Start Time  | Left | Thru | Right          | RTOR | App. Total | Left | Thru | Right          | RTOR | App. Total | Left    | Thru           | Right          | RTOR | App. Total | Left | Thru | Right  | RTOR  | App. Total | Exclu. Total | Inclu. Total | Int. Total |
| 06:00 AM    | 6    | 32   | 13             | 6    | 51         | 10   | 194  | 10             | 3    | 214        | 14      | 44             | 15             | 4    | 73         | 13   | 155  | 20     | 10    | 188        | 23           | 526          | 549        |
| 06:15 AM    | 7    | 30   | 11             | 3    | 48         | 6    | 221  | 6              | 4    | 233        | 24      | 62             | 7              | 3    | 93         | 28   | 145  | 23     | 7     | 196        | 17           | 570          | 587        |
| 06:30 AM    | 19   | 59   | 20             | 15   | 98         | 11   | 212  | 6              | 4    | 229        | 19      | 65             | 16             | 11   | 100        | 28   | 186  | 23     | 10    | 237        | 40           | 664          | 704        |
| 06:45 AM    | 18   | 63   | 25             | 10   | 106        | 14   | 258  | 10             | 6    | 282        | 33      | 116            | 24             | 14   | 173        | 49   | 270  | 29     | 11    | 348        | 41           | 909          | 950        |
| Total       | 50   | 184  | 69             | 34   | 303        | 41   | 885  | 32             | 17   | 958        | 90      | 287            | 62             | 32   | 439        | 118  | 756  | 95     | 38    | 969        | 121          | 2669         | 2790       |
|             |      |      |                |      |            |      |      |                |      |            |         |                |                |      |            |      |      |        |       |            |              |              |            |
| 07:00 AM    | 13   | 56   | 34             | 15   | 103        | 19   | 279  | 6              | 2    | 304        | 48      | 96             | 23             | 11   | 167        | 24   | 217  | 27     | 10    | 268        | 38           | 842          | 880        |
| 07:15 AM    | 15   | 77   | 25             | 11   | 117        | 24   | 250  | 5              | 0    | 279        | 35      | 125            | 30             | 9    | 190        | 30   | 232  | 25     | 15    | 287        | 35           | 873          | 908        |
| 07:30 AM    | 14   | 92   | 29             | 11   | 135        | 18   | 284  | 15             | 3    | 317        | 29      | 134            | 29             | 15   | 192        | 27   | 237  | 19     | 7     | 283        | 36           | 927          | 963        |
| 07:45 AM    | 19   | 110  | 28             | 12   | 157        | 35   | 253  | 14             | 8    | 302        | 45      | 153            | 38             | 19   | 236        | 42   | 254  | 20     | 8     | 316        | 47           | 1011         | 1058       |
| Total       | 61   | 335  | 116            | 49   | 512        | 96   | 1066 | 40             | 13   | 1202       | 157     | 508            | 120            | 54   | 785        | 123  | 940  | 91     | 40    | 1154       | 156          | 3653         | 3809       |
|             |      |      |                |      |            |      |      |                |      |            |         |                |                |      | ·          |      |      |        |       |            | '            |              |            |
| 08:00 AM    | 14   | 86   | 33             | 12   | 133        | 27   | 235  | 16             | 5    | 278        | 35      | 128            | 38             | 19   | 201        | 49   | 251  | 26     | 15    | 326        | 51           | 938          | 989        |
| 08:15 AM    | 19   | 86   | 31             | 11   | 136        | 28   | 229  | 18             | 5    | 275        | 39      | 136            | 32             | 13   | 207        | 34   | 214  | 23     | 8     | 271        | 37           | 889          | 926        |
| 08:30 AM    | 13   | 87   | 28             | 6    | 128        | 26   | 251  | 10             | 6    | 287        | 22      | 84             | 20             | 11   | 126        | 36   | 273  | 30     | 13    | 339        | 36           | 880          | 916        |
| 08:45 AM    | 16   | 78   | 17             | 8    | 111        | 23   | 192  | 13             | 4    | 228        | 23      | 110            | 25             | 12   | 158        | 31   | 219  | 30     | 14    | 280        | 38           | 777          | 815        |
| Total       | 62   | 337  | 109            | 37   | 508        | 104  | 907  | 57             | 20   | 1068       | 119     | 458            | 115            | 55   | 692        | 150  | 957  | 109    | 50    | 1216       | 162          | 3484         | 3646       |
|             |      |      |                |      |            |      |      |                |      |            |         |                |                |      | ,          |      |      |        |       |            | '            |              |            |
| Grand Total | 173  | 856  | 294            | 120  | 1323       | 241  | 2858 | 129            | 50   | 3228       | 366     | 1253           | 297            | 141  | 1916       | 391  | 2653 | 295    | 128   | 3339       | 439          | 9806         | 10245      |
| Apprch %    | 13.1 | 64.7 | 22.2           | _    |            | 7.5  | 88.5 | 4              |      | -          | 19.1    | 65.4           | 15.5           |      |            | 11.7 | 79.5 | 8.8    | _     |            |              |              | _          |
| Total %     | 1.8  | 8.7  | 3              |      | 13.5       | 2.5  | 29.1 | 1.3            |      | 32.9       | 3.7     | 12.8           | 3              |      | 19.5       | 4    | 27.1 | 3      |       | 34.1       | 4.3          | 95.7         |            |
|             |      |      |                |      |            |      |      |                |      |            |         |                |                |      |            |      |      |        |       |            |              |              |            |

|                      |              | Norwalk E  |            |             |      |       | Avenue |            |      |        | Boulevard |            |      |      | Avenue  |            |            |
|----------------------|--------------|------------|------------|-------------|------|-------|--------|------------|------|--------|-----------|------------|------|------|---------|------------|------------|
|                      |              | Southl     | oouna      |             |      | Westk | ouna   |            |      | Northi | bound     |            |      | East | ound    |            |            |
| Start Time           | Left         | Thru       | Right      | App. Total  | Left | Thru  | Right  | App. Total | Left | Thru   | Right /   | App. Total | Left | Thru | Right / | App. Total | Int. Total |
| Peak Hour Analysis   | From 06:00   | AM to 08   | :45 AM -   | Peak 1 of 1 |      |       |        |            |      |        |           |            |      |      |         |            |            |
| Peak Hour for Entire | Intersection | n Begins a | at 07:30 A | AM .        |      |       |        |            |      |        |           |            |      |      |         |            |            |
| 07:30 AM             | 14           | 92         | 29         | 135         | 18   | 284   | 15     | 317        | 29   | 134    | 29        | 192        | 27   | 237  | 19      | 283        | 927        |
| 07:45 AM             | 19           | 110        | 28         | 157         | 35   | 253   | 14     | 302        | 45   | 153    | 38        | 236        | 42   | 254  | 20      | 316        | 1011       |
| 08:00 AM             | 14           | 86         | 33         | 133         | 27   | 235   | 16     | 278        | 35   | 128    | 38        | 201        | 49   | 251  | 26      | 326        | 938        |
| 08:15 AM             | 19           | 86         | 31         | 136         | 28   | 229   | 18     | 275        | 39   | 136    | 32        | 207        | 34   | 214  | 23      | 271        | 889        |
| Total Volume         | 66           | 374        | 121        | 561         | 108  | 1001  | 63     | 1172       | 148  | 551    | 137       | 836        | 152  | 956  | 88      | 1196       | 3765       |
| % App. Total         | 11.8         | 66.7       | 21.6       |             | 9.2  | 85.4  | 5.4    |            | 17.7 | 65.9   | 16.4      |            | 12.7 | 79.9 | 7.4     |            |            |
| PHF                  | .868         | .850       | .917       | .893        | .771 | .881  | .875   | .924       | .822 | .900   | .901      | .886       | .776 | .941 | .846    | .917       | .931       |

City of Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue Weather: Clear



File Name: 01\_SFS\_Nor\_Flo\_AM

Site Code : 221076 Start Date : 12/6/2022

Page No : 2

City of Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue Weather: Clear File Name: 01\_SFS\_Nor\_Flo\_AM

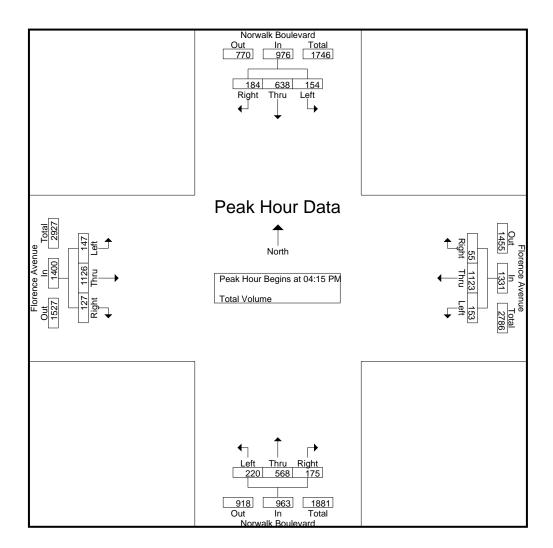
Site Code : 221076 Start Date : 12/6/2022

Page No : 3

|                    |          |          | Boulevard | d             |          |      | e Avenue |               |          |       | Boulevard | d             |          |       | Avenue |               |            |
|--------------------|----------|----------|-----------|---------------|----------|------|----------|---------------|----------|-------|-----------|---------------|----------|-------|--------|---------------|------------|
|                    |          | Sout     | hbound    |               |          | vves | tbound   |               |          | Norti | nbound    |               |          | Easti | oound  |               |            |
| Start Time         | Left     | Thru     | Right     | App.<br>Total | Left     | Thru | Right    | App.<br>Total | Left     | Thru  | Right     | App.<br>Total | Left     | Thru  | Right  | App.<br>Total | Int. Total |
| Peak Hour Analysis | From 06: | 00 AM to | 08:45 AN  | 1 - Peak 1 of | 1        |      |          |               |          |       |           |               |          | •     |        |               |            |
| Peak Hour for Each | Approacl | n Begins | at:       |               |          |      |          |               |          |       |           |               |          |       |        |               |            |
|                    | 07:30 AM | 1        |           |               | 07:00 AM | 1    |          |               | 07:30 AM | l     |           |               | 07:45 AM |       |        |               |            |
| +0 mins.           | 14       | 92       | 29        | 135           | 19       | 279  | 6        | 304           | 29       | 134   | 29        | 192           | 42       | 254   | 20     | 316           |            |
| +15 mins.          | 19       | 110      | 28        | 157           | 24       | 250  | 5        | 279           | 45       | 153   | 38        | 236           | 49       | 251   | 26     | 326           |            |
| +30 mins.          | 14       | 86       | 33        | 133           | 18       | 284  | 15       | 317           | 35       | 128   | 38        | 201           | 34       | 214   | 23     | 271           |            |
| +45 mins.          | 19       | 86       | 31        | 136           | 35       | 253  | 14       | 302           | 39       | 136   | 32        | 207           | 36       | 273   | 30     | 339           |            |
| Total Volume       | 66       | 374      | 121       | 561           | 96       | 1066 | 40       | 1202          | 148      | 551   | 137       | 836           | 161      | 992   | 99     | 1252          |            |
| % App. Total       | 11.8     | 66.7     | 21.6      |               | 8        | 88.7 | 3.3      |               | 17.7     | 65.9  | 16.4      |               | 12.9     | 79.2  | 7.9    |               |            |
| PHF                | .868     | .850     | .917      | .893          | .686     | .938 | .667     | .948          | .822     | .900  | .901      | .886          | .821     | .908  | .825   | .923          |            |

City of Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue Weather: Clear File Name: 01\_SFS\_Nor\_Flo\_PM Site Code: 221076

Site Code : 221076 Start Date : 12/6/2022


Page No : 1

Groups Printed- Total Volume

|      |                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Printed                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Norw                                                                                  | /alk Βοι                                                                                                                                                                                  | ılevard                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                      | Flor                                                        | ence Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /enue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | Norw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alk Bou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | levard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ence A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /enue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | S                                                                                     | outhbou                                                                                                                                                                                   | und                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                   |                                                      | V                                                           | Vestbou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ınd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orthbou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | astbou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Left | Thru                                                                                  | Right                                                                                                                                                                                     | RTOR                                                                                                                                                                                                                                                                                                                        | App. Total                                                                                                                                                                                                                        | Left                                                 | Thru                                                        | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | App. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Left                                                   | Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | App. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | App. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exclu. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Inclu. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Int. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 29   | 149                                                                                   | 45                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                          | 223                                                                                                                                                                                                                               | 28                                                   | 253                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                     | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25   | 151                                                                                   | 38                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                          | 214                                                                                                                                                                                                                               | 30                                                   | 253                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                     | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47   | 186                                                                                   | 70                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                                                                                          | 303                                                                                                                                                                                                                               | 35                                                   | 289                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                     | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45   | 147                                                                                   | 39                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                          | 231                                                                                                                                                                                                                               | 43                                                   | 299                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78                                                     | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 146  | 633                                                                                   | 192                                                                                                                                                                                       | 59                                                                                                                                                                                                                                                                                                                          | 971                                                                                                                                                                                                                               | 136                                                  | 1094                                                        | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 197                                                    | 543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37   | 154                                                                                   | 37                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                          | 228                                                                                                                                                                                                                               | 45                                                   | 282                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58                                                     | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15   | 171                                                                                   | 36                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                          | 222                                                                                                                                                                                                                               | 31                                                   | 232                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                     | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21   | 131                                                                                   | 43                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                          | 195                                                                                                                                                                                                                               | 34                                                   | 232                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                     | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16   | 101                                                                                   | 19                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                           | 136                                                                                                                                                                                                                               | 19                                                   | 239                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                     | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 89   | 557                                                                                   | 135                                                                                                                                                                                       | 52                                                                                                                                                                                                                                                                                                                          | 781                                                                                                                                                                                                                               | 129                                                  | 985                                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 144                                                    | 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23   | 113                                                                                   | 23                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                          | 159                                                                                                                                                                                                                               | 15                                                   | 219                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9    | 79                                                                                    | 32                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                          | 120                                                                                                                                                                                                                               | 22                                                   | 220                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12   | 93                                                                                    | 23                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                          | 128                                                                                                                                                                                                                               | 21                                                   | 199                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                     | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3    | 57                                                                                    | 14                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                           | 74                                                                                                                                                                                                                                | 12                                                   | 146                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                     | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47   | 342                                                                                   | 92                                                                                                                                                                                        | 51                                                                                                                                                                                                                                                                                                                          | 481                                                                                                                                                                                                                               | 70                                                   | 784                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83                                                     | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 282  | 1532                                                                                  | 419                                                                                                                                                                                       | 162                                                                                                                                                                                                                                                                                                                         | 2233                                                                                                                                                                                                                              | 335                                                  | 2863                                                        | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 424                                                    | 1343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12.6 | 68.6                                                                                  | 18.8                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   | 10.2                                                 | 86.9                                                        | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.7                                                   | 62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.4  | 13.3                                                                                  | 3.6                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             | 19.4                                                                                                                                                                                                                              | 2.9                                                  | 24.8                                                        | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7                                                    | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 29<br>25<br>47<br>45<br>146<br>37<br>15<br>21<br>16<br>89<br>23<br>9<br>12<br>3<br>47 | S<br>Left Thru<br>29 149<br>25 151<br>47 186<br>45 147<br>146 633<br>37 154<br>15 171<br>21 131<br>16 101<br>89 557<br>23 113<br>9 79<br>12 93<br>3 57<br>47 342<br>282 1532<br>12.6 68.6 | Southbook   Left   Thru   Right   29   149   45   25   151   38   47   186   70   45   147   39   146   633   192     37   154   37   15   171   36   21   131   43   16   101   19   89   557   135     23   113   23   9   79   32   12   93   23   3   57   14   47   342   92     282   1532   419   12.6   68.6   18.8 | 29 149 45 15 25 151 38 13 47 186 70 19 45 147 39 12 146 633 192 59  37 154 37 16 15 171 36 12 21 131 43 18 16 101 19 6 89 557 135 52  23 113 23 12 9 79 32 18 12 93 23 14 3 57 14 7 47 342 92 51  282 1532 419 162 12.6 68.6 18.8 | Southbound   Left   Thru   Right   RTOR   App. Total | Southbound   Left   Thru   Right   RTOR   App. Total   Left | Southbound   V     Left   Thru   Right   RTOR   App. Total   Left   Thru   29   149   45   15   223   28   253   25   151   38   13   214   30   253   47   186   70   19   303   35   289   45   147   39   12   231   43   299   146   633   192   59   971   136   1094     37   154   37   16   228   45   282   15   171   36   12   222   31   232   21   131   43   18   195   34   232   21   131   43   18   195   34   232   21   131   43   18   195   34   232   21   131   43   18   195   34   232   21   131   43   18   195   34   232   25   781   129   985     23   113   23   12   159   15   219   9   79   32   18   120   22   220   12   93   23   14   128   21   199   3   57   14   7   74   12   146   47   342   92   51   481   70   784     282   1532   419   162   2233   335   2863   12.6   68.6   18.8     10.2   86.9 | Southbound   Westbound   Left   Thru   Right   RTOR   App. Total   Left   Thru   Right   RTOR   App. Total   Left   Thru   Right   29   149   45   15   223   28   253   10   25   151   38   13   214   30   253   13   47   186   70   19   303   35   289   11   45   147   39   12   231   43   299   24   146   633   192   59   971   136   1094   58   37   154   37   16   228   45   282   7   15   171   36   12   222   31   232   7   21   131   43   18   195   34   232   4   16   101   19   6   136   19   239   4   89   557   135   52   781   129   985   22   23   13   23   12   159   15   219   1   9   79   32   18   120   22   220   1   12   93   23   14   128   21   199   11   3   57   14   7   74   12   146   4   47   342   92   51   481   70   784   17   282   1532   419   162   2233   335   2863   97   12.6   68.6   18.8   10.2   86.9   2.9 | Southbound   Westbound   Left   Thru   Right   RTOR   App. Total   Left   Thru   Right   RTOR   App. Total   Left   Thru   Right   RTOR   RT | Norwalk Boulevard   Southbound   Westbound   Westbound | Norwalk Boulevard   Southbound   Westbound   Westbound   Westbound   Left   Thru   Right   RTOR   App. Total   Left   App. Total   Left   Thru   Right   RTOR   App. Total   Left   App. Total   Left   Thru   Right   RTOR   App. Total   Left   App. Total   Left   Thru   Right   RTOR   App. Total   Left   App. Total   Left   Thru   Right   RTOR   App. Total   Left   App. Total   Left   Thru   Right   RTOR   App. Total   Left   Left   Left   Thru   Right   RTOR   App. Total   Left   Left   Thru   Right   RTOR   App. Total   Left   Left   Left   Thru   Right   RTOR   App. Total   Left   Left   Left   Left   RTOR   App. Total   Left   Left   Left   Left   RTOR   App. Total   Left   Left   Left   Left   RTOR   App. Total   Left   Left   Left   Left   RTOR   App. Total   Left   Left   Left   RTOR   App. Total   Left   Left   RTOR | Norwalk Boulevard   Southbound   Westbound   Westbound   Norwalk Boulevard   Southbound   Southbound   Westbound   Norwalk Boulevard   Norwalk Boulevard   Southbound   Norwalk Boulevard   Southbound   Norwalk Boulevard   No | Norwalk Boulevard   Southbound   Westbound   Norwalk Bound   Norwalk Bound   Northbound   Nor | Norwalk Boulevard   Southbound   Westbound   Westbound   Westbound   Norwalk Boulevard   Northbound   North | Norwalk Boulevard   Southbound   Westbound   Westbound   Northbound   Northbound | Norwalk Boulevard   Southbound   Florence Avenue   Westbound   Westbound   Northbound   Northb | Norwalk Boulevard   Southbound   Florence Avenue   Westbound   Norwalk Boulevard   Northbound   Northbound   Eth   Thru   Right   RTOR   App. Total   Left   Thru   Right   RTOR   App. Total   RTOR   App. Total   Left   Thru   Right   RTOR   App. Total   Left   Thru   Right   RTOR   App. Total   Left   Thru   Right   RTOR   App. Total   App. Total   App. Total   Total | Norwalk Boulevard   Southbound   Florence Avenue   Westbound   Westbound   Northbound   Northbound   Eastbound   Eastbound   Northbound   Northbound   Northbound   Eastbound   Northbound   Northbound   Northbound   Northbound   Eastbound   Northbound   Northbound | Norwalk Boulevard   Southbound   Florence Avenue   Westbound   Southbound   Westbound   Southbound   Westbound   Westbound   Westbound   Southbound   Southboun | Norwalk Boulevard   Southbound   Florence Avenue   Westbound   W | Norwalk Boulevard   Southbound   Florence Avenue   Westbound   W | Norwalk Boulevard   Southbound   Southboun |

|                      |             | Norwalk E  |            | I           |      | Florence |       |            |      | Norwalk E |         |            |      |      | Avenue |            |            |
|----------------------|-------------|------------|------------|-------------|------|----------|-------|------------|------|-----------|---------|------------|------|------|--------|------------|------------|
|                      |             | Southl     | bound      |             |      | Westk    | ound  |            |      | Northl    | oound   |            |      | East | oound  |            |            |
| Start Time           | Left        | Thru       | Right      | App. Total  | Left | Thru     | Right | App. Total | Left | Thru      | Right / | App. Total | Left | Thru | Right  | App. Total | Int. Total |
| Peak Hour Analysis   | From 04:00  | PM to 06   | :45 PM -   | Peak 1 of 1 |      |          |       |            |      |           |         |            |      |      |        |            |            |
| Peak Hour for Entire | Intersectio | n Begins a | at 04:15 F | PM .        |      |          |       |            |      |           |         |            |      |      |        |            |            |
| 04:15 PM             | 25          | 151        | 38         | 214         | 30   | 253      | 13    | 296        | 30   | 121       | 43      | 194        | 39   | 267  | 28     | 334        | 1038       |
| 04:30 PM             | 47          | 186        | 70         | 303         | 35   | 289      | 11    | 335        | 54   | 145       | 42      | 241        | 40   | 278  | 33     | 351        | 1230       |
| 04:45 PM             | 45          | 147        | 39         | 231         | 43   | 299      | 24    | 366        | 78   | 175       | 51      | 304        | 39   | 307  | 29     | 375        | 1276       |
| 05:00 PM             | 37          | 154        | 37         | 228         | 45   | 282      | 7     | 334        | 58   | 127       | 39      | 224        | 29   | 274  | 37     | 340        | 1126       |
| Total Volume         | 154         | 638        | 184        | 976         | 153  | 1123     | 55    | 1331       | 220  | 568       | 175     | 963        | 147  | 1126 | 127    | 1400       | 4670       |
| % App. Total         | 15.8        | 65.4       | 18.9       |             | 11.5 | 84.4     | 4.1   |            | 22.8 | 59        | 18.2    |            | 10.5 | 80.4 | 9.1    |            |            |
| PHF                  | .819        | .858       | .657       | .805        | .850 | .939     | .573  | .909       | .705 | .811      | .858    | .792       | .919 | .917 | .858   | .933       | .915       |

City of Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue Weather: Clear



File Name: 01\_SFS\_Nor\_Flo\_PM

Site Code : 221076 Start Date : 12/6/2022

Page No : 2

City of Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue Weather: Clear File Name: 01\_SFS\_Nor\_Flo\_PM

Site Code : 221076 Start Date : 12/6/2022

Page No : 3

|                    |          |           | Boulevard<br>hbound |               |          |      | e Avenue<br>tbound |               |          |      | Boulevard | t             |          |      | e Avenue<br>bound |               |            |
|--------------------|----------|-----------|---------------------|---------------|----------|------|--------------------|---------------|----------|------|-----------|---------------|----------|------|-------------------|---------------|------------|
| Start Time         | Left     | Thru      | Right               | App.<br>Total | Left     | Thru | Right              | App.<br>Total | Left     | Thru | Right     | App.<br>Total | Left     | Thru | Right             | App.<br>Total | Int. Total |
| Peak Hour Analysis | From 04  | :00 PM to | 06:45 PM            | - Peak 1 of   | 1        |      |                    |               |          |      |           |               |          |      |                   |               | _          |
| Peak Hour for Each | Approacl | h Begins  | at:                 |               |          |      |                    |               |          |      |           |               |          |      |                   |               |            |
|                    | 04:30 PN | Λ         |                     |               | 04:15 PM | 1    |                    |               | 04:15 PM |      |           |               | 04:15 PM |      |                   |               |            |
| +0 mins.           | 47       | 186       | 70                  | 303           | 30       | 253  | 13                 | 296           | 30       | 121  | 43        | 194           | 39       | 267  | 28                | 334           |            |
| +15 mins.          | 45       | 147       | 39                  | 231           | 35       | 289  | 11                 | 335           | 54       | 145  | 42        | 241           | 40       | 278  | 33                | 351           |            |
| +30 mins.          | 37       | 154       | 37                  | 228           | 43       | 299  | 24                 | 366           | 78       | 175  | 51        | 304           | 39       | 307  | 29                | 375           |            |
| +45 mins.          | 15       | 171       | 36                  | 222           | 45       | 282  | 7                  | 334           | 58       | 127  | 39        | 224           | 29       | 274  | 37                | 340           |            |
| Total Volume       | 144      | 658       | 182                 | 984           | 153      | 1123 | 55                 | 1331          | 220      | 568  | 175       | 963           | 147      | 1126 | 127               | 1400          |            |
| % App. Total       | 14.6     | 66.9      | 18.5                |               | 11.5     | 84.4 | 4.1                |               | 22.8     | 59   | 18.2      |               | 10.5     | 80.4 | 9.1               |               |            |
| PHF                | .766     | .884      | .650                | .812          | .850     | .939 | .573               | .909          | .705     | .811 | .858      | .792          | .919     | .917 | .858              | .933          |            |

Location: Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue



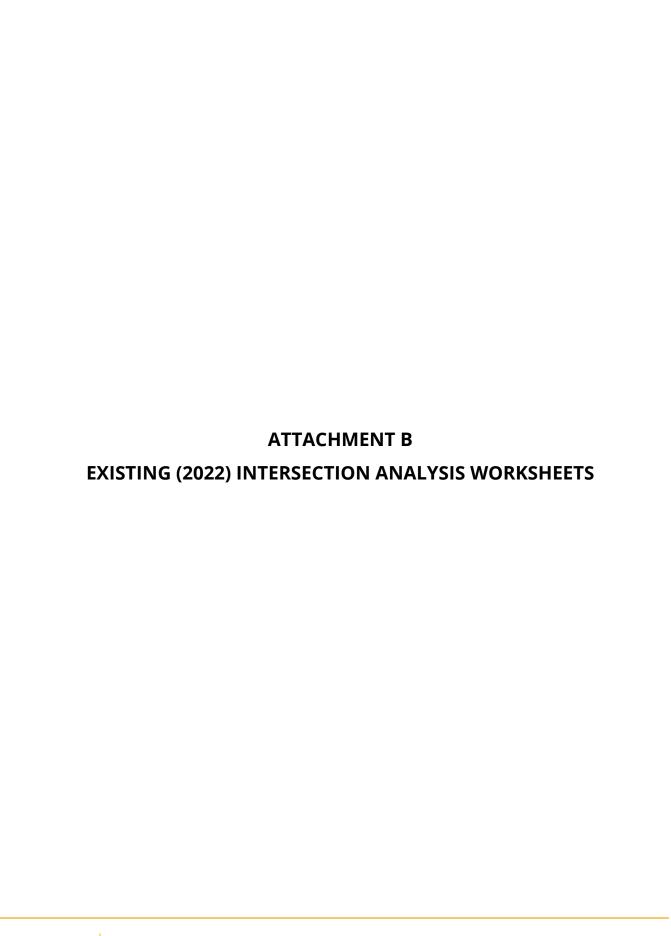
Date: 12/6/2022 Day: Tuesday

#### **PEDESTRIANS**

|                | North Leg<br>Norwalk Boulevard | East Leg<br>Florence Avenue | South Leg<br>Norwalk Boulevard | West Leg<br>Florence Avenue |    |
|----------------|--------------------------------|-----------------------------|--------------------------------|-----------------------------|----|
|                | Pedestrians                    | Pedestrians                 | Pedestrians                    | Pedestrians                 |    |
| 6:00 AM        | 0                              | 5                           | 0                              | 0                           | 5  |
| 6:15 AM        | 0                              | 1                           | 1                              | 0                           | 2  |
| 6:30 AM        | 0                              | 0                           | 1                              | 1                           | 2  |
| 6:45 AM        | 0                              | 0                           | 1                              | 0                           | 1  |
| 7:00 AM        | 1                              | 2                           | 0                              | 0                           | 3  |
| 7:15 AM        | 1                              | 1                           | 2                              | 0                           | 4  |
| 7:30 AM        | 0                              | 1                           | 0                              | 1                           | 2  |
| 7:45 AM        | 1                              | 4                           | 3                              | 0                           | 8  |
| 8:00 AM        | 0                              | 0                           | 0                              | 0                           | 0  |
| 8:15 AM        | 0                              | 1                           | 0                              | 0                           | 1  |
| 8:30 AM        | 0                              | 0                           | 0                              | 0                           | 0  |
| 8:45 AM        | 0                              | 2                           | 0                              | 0                           | 2  |
| TOTAL VOLUMES: | 3                              | 17                          | 8                              | 2                           | 30 |

|                | North Leg<br>Norwalk Boulevard | East Leg<br>Florence Avenue | South Leg<br>Norwalk Boulevard | West Leg<br>Florence Avenue |    |
|----------------|--------------------------------|-----------------------------|--------------------------------|-----------------------------|----|
|                | Pedestrians                    | Pedestrians                 | Pedestrians                    | Pedestrians                 |    |
| 4:00 PM        | 0                              | 10                          | 2                              | 4                           | 16 |
| 4:15 PM        | 0                              | 0                           | 1                              | 0                           | 1  |
| 4:30 PM        | 0                              | 1                           | 3                              | 4                           | 8  |
| 4:45 PM        | 1                              | 6                           | 4                              | 2                           | 13 |
| 5:00 PM        | 0                              | 1                           | 1                              | 1                           | 3  |
| 5:15 PM        | 0                              | 0                           | 0                              | 0                           | 0  |
| 5:30 PM        | 0                              | 0                           | 0                              | 2                           | 2  |
| 5:45 PM        | 0                              | 0                           | 0                              | 0                           | 0  |
| 6:00 PM        | 0                              | 0                           | 0                              | 0                           | 0  |
| 6:15 PM        | 0                              | 1                           | 1                              | 0                           | 2  |
| 6:30 PM        | 1                              | 0                           | 0                              | 1                           | 2  |
| 6:45 PM        | 0                              | 0                           | 1                              | 0                           | 1  |
| TOTAL VOLUMES: | 2                              | 19                          | 13                             | 14                          | 48 |

Location: Santa Fe Springs N/S: Norwalk Boulevard E/W: Florence Avenue




Date: 12/6/2022 Day: Tuesday

#### BICYCLES

|                |      | Southbound<br>rwalk Boulev |       |      | Westbound<br>orence Aven |       |      | Northbound<br>walk Boulev |       | Flo  | Eastbound<br>orence Aven | ue    |   |
|----------------|------|----------------------------|-------|------|--------------------------|-------|------|---------------------------|-------|------|--------------------------|-------|---|
| <u></u>        | Left | Thru                       | Right | Left | Thru                     | Right | Left | Thru                      | Right | Left | Thru                     | Right |   |
| 6:00 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0 |
| 6:15 AM        | 1    | 0                          | 1     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 1                        | 0     | 3 |
| 6:30 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0 |
| 6:45 AM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 1 |
| 7:00 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0 |
| 7:15 AM        | 0    | 2                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 2 |
| 7:30 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0 |
| 7:45 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0 |
| 8:00 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 1                         | 0     | 0    | 0                        | 0     | 1 |
| 8:15 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0 |
| 8:30 AM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 1 |
| 8:45 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 1    | 0                        | 0     | 1 |
| TOTAL VOLUMES: | 1    | 4                          | 1     | 0    | 0                        | 0     | 0    | 1                         | 0     | 1    | 1                        | 0     | 9 |

|                |      | Southbound<br>rwalk Boulev |       |      | Westbound<br>orence Aven |       |      | Northbound<br>rwalk Boule |       | FI   | Eastbound<br>orence Aven | ue    |    |
|----------------|------|----------------------------|-------|------|--------------------------|-------|------|---------------------------|-------|------|--------------------------|-------|----|
|                | Left | Thru                       | Right | Left | Thru                     | Right | Left | Thru                      | Right | Left | Thru                     | Right |    |
| 4:00 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 1                        | 0     | 1  |
| 4:15 PM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 1                         | 0     | 1    | 1                        | 0     | 4  |
| 4:30 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 1                         | 0     | 0    | 0                        | 0     | 1  |
| 4:45 PM        | 0    | 1                          | 1     | 0    | 0                        | 0     | 1    | 0                         | 0     | 0    | 0                        | 0     | 3  |
| 5:00 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0  |
| 5:15 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0  |
| 5:30 PM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 1                        | 0     | 2  |
| 5:45 PM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 1                         | 0     | 0    | 0                        | 0     | 2  |
| 6:00 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0  |
| 6:15 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0  |
| 6:30 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0  |
| 6:45 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                         | 0     | 0    | 0                        | 0     | 0  |
| TOTAL VOLUMES: | 0    | 4                          | 1     | 0    | 0                        | 0     | 1    | 3                         | 0     | 1    | 3                        | 0     | 13 |



|                      | •     | <b>→</b> | •     | •     | •        | •     | 4     | <b>†</b> | <b>/</b> | -     | ţ        | 4     |
|----------------------|-------|----------|-------|-------|----------|-------|-------|----------|----------|-------|----------|-------|
| Lane Group           | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL   | SBT      | SBR   |
| Lane Configurations  | 7     | <b>^</b> | 7     | Ţ     | <b>^</b> | 7     | *     | 44       | 7        | *     | <b>^</b> | 7     |
| Traffic Volume (vph) | 152   | 956      | 88    | 108   | 1001     | 63    | 148   | 551      | 137      | 66    | 374      | 121   |
| Future Volume (vph)  | 152   | 956      | 88    | 108   | 1001     | 63    | 148   | 551      | 137      | 66    | 374      | 121   |
| Turn Type            | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  | pm+pt | NA       | Perm     | pm+pt | NA       | Perm  |
| Protected Phases     | 5     | 2        |       | 1     | 6        |       | 3     | 8        |          | 7     | 4        |       |
| Permitted Phases     | 2     |          | 2     | 6     |          | 6     | 8     |          | 8        | 4     |          | 4     |
| Detector Phase       | 5     | 2        | 2     | 1     | 6        | 6     | 3     | 8        | 8        | 7     | 4        | 4     |
| Switch Phase         |       |          |       |       |          |       |       |          |          |       |          |       |
| Minimum Initial (s)  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0     | 5.0   | 10.0     | 10.0  |
| Minimum Split (s)    | 9.6   | 32.4     | 32.4  | 9.6   | 32.4     | 32.4  | 9.6   | 32.4     | 32.4     | 9.6   | 32.4     | 32.4  |
| Total Split (s)      | 10.2  | 37.5     | 37.5  | 10.5  | 37.8     | 37.8  | 9.6   | 32.4     | 32.4     | 9.6   | 32.4     | 32.4  |
| Total Split (%)      | 11.3% | 41.7%    | 41.7% | 11.7% | 42.0%    | 42.0% | 10.7% | 36.0%    | 36.0%    | 10.7% | 36.0%    | 36.0% |
| Yellow Time (s)      | 3.6   | 4.4      | 4.4   | 3.6   | 4.4      | 4.4   | 3.6   | 4.4      | 4.4      | 3.6   | 4.4      | 4.4   |
| All-Red Time (s)     | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0      | 1.0   | 1.0      | 1.0   |
| Lost Time Adjust (s) | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)  | 4.6   | 5.4      | 5.4   | 4.6   | 5.4      | 5.4   | 4.6   | 5.4      | 5.4      | 4.6   | 5.4      | 5.4   |
| Lead/Lag             | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   | Lead  | Lag      | Lag      | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes      | Yes   | Yes      | Yes   |
| Recall Mode          | None  | None     | None  | None  | None     | None  | None  | None     | None     | None  | None     | None  |
| Act Effct Green (s)  | 36.6  | 31.5     | 31.5  | 35.7  | 29.1     | 29.1  | 26.2  | 21.6     | 21.6     | 25.0  | 19.1     | 19.1  |
| Actuated g/C Ratio   | 0.46  | 0.40     | 0.40  | 0.45  | 0.37     | 0.37  | 0.33  | 0.27     | 0.27     | 0.31  | 0.24     | 0.24  |
| v/c Ratio            | 0.74  | 0.73     | 0.13  | 0.51  | 0.83     | 0.10  | 0.50  | 0.62     | 0.28     | 0.28  | 0.47     | 0.27  |
| Control Delay        | 36.9  | 26.0     | 1.8   | 19.9  | 30.2     | 0.3   | 24.6  | 29.5     | 5.9      | 19.6  | 27.7     | 5.4   |
| Queue Delay          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0   |
| Total Delay          | 36.9  | 26.0     | 1.8   | 19.9  | 30.2     | 0.3   | 24.6  | 29.5     | 5.9      | 19.6  | 27.7     | 5.4   |
| LOS                  | D     | С        | Α     | В     | С        | Α     | С     | С        | Α        | В     | С        | Α     |
| Approach Delay       |       | 25.6     |       |       | 27.6     |       |       | 24.8     |          |       | 22.0     |       |
| Approach LOS         |       | С        |       |       | С        |       |       | С        |          |       | С        |       |

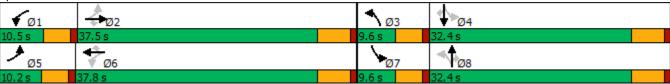
#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 79.4

Natural Cycle: 85

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.83

Intersection Signal Delay: 25.5
Intersection Capacity Utilization 73.5%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Norwalk Av. & Florence Av.



|                                       | ۶           | <b>→</b>     | •          | •           | <b>←</b>     | •          | 1           | <b>†</b>    | /          | <b>/</b>   | <b>+</b>    |            |
|---------------------------------------|-------------|--------------|------------|-------------|--------------|------------|-------------|-------------|------------|------------|-------------|------------|
| Movement                              | EBL         | EBT          | EBR        | WBL         | WBT          | WBR        | NBL         | NBT         | NBR        | SBL        | SBT         | SBR        |
| Lane Configurations                   |             | <b>^</b>     | 7          | 7           | <b>^</b>     | 7          | ሻ           | 44          | 7          | ሻ          | <b>^</b>    | 7          |
| Traffic Volume (veh/h)                | 152         | 956          | 88         | 108         | 1001         | 63         | 148         | 551         | 137        | 66         | 374         | 121        |
| Future Volume (veh/h)                 | 152         | 956          | 88         | 108         | 1001         | 63         | 148         | 551         | 137        | 66         | 374         | 121        |
| Initial Q (Qb), veh                   | 0           | 0            | 0          | 0           | 0            | 0          | 0           | 0           | 0          | 0          | 0           | 0          |
| Ped-Bike Adj(A_pbT)                   | 1.00        | 4.00         | 1.00       | 1.00        | 4.00         | 1.00       | 1.00        | 4.00        | 0.98       | 1.00       | 4.00        | 1.00       |
| Parking Bus, Adj                      | 1.00        | 1.00         | 1.00       | 1.00        | 1.00         | 1.00       | 1.00        | 1.00        | 1.00       | 1.00       | 1.00        | 1.00       |
| Work Zone On Approach                 | 1070        | No           | 1070       | 1070        | No           | 1070       | 1070        | No          | 1070       | 1070       | No          | 1070       |
| Adj Sat Flow, veh/h/ln                | 1870<br>163 | 1870<br>1028 | 1870<br>54 | 1870<br>116 | 1870<br>1076 | 1870<br>45 | 1870<br>159 | 1870<br>592 | 1870<br>76 | 1870<br>71 | 1870<br>402 | 1870<br>81 |
| Adj Flow Rate, veh/h Peak Hour Factor | 0.93        | 0.93         | 0.93       | 0.93        | 0.93         | 0.93       | 0.93        | 0.93        | 0.93       | 0.93       | 0.93        | 0.93       |
| Percent Heavy Veh, %                  | 0.93        | 0.93         | 0.93       | 0.93        | 0.93         | 0.93       | 0.93        | 0.93        | 0.93       | 0.93       | 0.93        | 0.93       |
| Cap, veh/h                            | 279         | 1363         | 607        | 275         | 1313         | 585        | 325         | 831         | 363        | 251        | 775         | 345        |
| Arrive On Green                       | 0.08        | 0.38         | 0.38       | 0.06        | 0.37         | 0.37       | 0.07        | 0.23        | 0.23       | 0.05       | 0.22        | 0.22       |
| Sat Flow, veh/h                       | 1781        | 3554         | 1581       | 1781        | 3554         | 1584       | 1781        | 3554        | 1553       | 1781       | 3554        | 1583       |
| Grp Volume(v), veh/h                  | 163         | 1028         | 54         | 116         | 1076         | 45         | 159         | 592         | 76         | 71         | 402         | 81         |
| Grp Sat Flow(s), veh/h/ln             | 1781        | 1777         | 1581       | 1781        | 1777         | 1584       | 1781        | 1777        | 1553       | 1781       | 1777        | 1583       |
| Q Serve(g_s), s                       | 4.1         | 18.6         | 1.6        | 2.9         | 20.3         | 1.4        | 5.0         | 11.4        | 2.9        | 2.2        | 7.4         | 3.1        |
| Cycle Q Clear(g_c), s                 | 4.1         | 18.6         | 1.6        | 2.9         | 20.3         | 1.4        | 5.0         | 11.4        | 2.9        | 2.2        | 7.4         | 3.1        |
| Prop In Lane                          | 1.00        |              | 1.00       | 1.00        |              | 1.00       | 1.00        |             | 1.00       | 1.00       |             | 1.00       |
| Lane Grp Cap(c), veh/h                | 279         | 1363         | 607        | 275         | 1313         | 585        | 325         | 831         | 363        | 251        | 775         | 345        |
| V/C Ratio(X)                          | 0.58        | 0.75         | 0.09       | 0.42        | 0.82         | 0.08       | 0.49        | 0.71        | 0.21       | 0.28       | 0.52        | 0.23       |
| Avail Cap(c_a), veh/h                 | 279         | 1538         | 684        | 308         | 1552         | 692        | 325         | 1293        | 565        | 279        | 1293        | 576        |
| HCM Platoon Ratio                     | 1.00        | 1.00         | 1.00       | 1.00        | 1.00         | 1.00       | 1.00        | 1.00        | 1.00       | 1.00       | 1.00        | 1.00       |
| Upstream Filter(I)                    | 1.00        | 1.00         | 1.00       | 1.00        | 1.00         | 1.00       | 1.00        | 1.00        | 1.00       | 1.00       | 1.00        | 1.00       |
| Uniform Delay (d), s/veh              | 16.6        | 19.8         | 14.6       | 15.5        | 21.2         | 15.2       | 21.5        | 26.1        | 22.9       | 21.4       | 25.6        | 23.9       |
| Incr Delay (d2), s/veh                | 2.1         | 1.9          | 0.1        | 0.4         | 3.1          | 0.1        | 0.4         | 1.2         | 0.3        | 0.2        | 0.5         | 0.3        |
| Initial Q Delay(d3),s/veh             | 0.0         | 0.0          | 0.0        | 0.0         | 0.0          | 0.0        | 0.0         | 0.0         | 0.0        | 0.0        | 0.0         | 0.0        |
| %ile BackOfQ(50%),veh/ln              | 1.6         | 7.1          | 0.5        | 1.1         | 8.0          | 0.5        | 2.0         | 4.6         | 1.0        | 0.9        | 3.0         | 1.1        |
| Unsig. Movement Delay, s/veh          |             |              |            |             |              |            |             |             |            |            |             |            |
| LnGrp Delay(d),s/veh                  | 18.7        | 21.7         | 14.7       | 15.9        | 24.3         | 15.2       | 21.9        | 27.3        | 23.2       | 21.6       | 26.1        | 24.2       |
| LnGrp LOS                             | В           | С            | В          | В           | С            | В          | С           | С           | С          | С          | С           | С          |
| Approach Vol, veh/h                   |             | 1245         |            |             | 1237         |            |             | 827         |            |            | 554         |            |
| Approach Delay, s/veh                 |             | 21.0         |            |             | 23.2         |            |             | 25.9        |            |            | 25.3        |            |
| Approach LOS                          |             | С            |            |             | С            |            |             | С           |            |            | С           |            |
| Timer - Assigned Phs                  | 1           | 2            | 3          | 4           | 5            | 6          | 7           | 8           |            |            |             |            |
| Phs Duration (G+Y+Rc), s              | 9.1         | 33.9         | 9.6        | 21.6        | 10.2         | 32.8       | 8.4         | 22.7        |            |            |             |            |
| Change Period (Y+Rc), s               | 4.6         | 5.4          | 4.6        | 5.4         | 4.6          | 5.4        | 4.6         | 5.4         |            |            |             |            |
| Max Green Setting (Gmax), s           | 5.9         | 32.1         | 5.0        | 27.0        | 5.6          | 32.4       | 5.0         | 27.0        |            |            |             |            |
| Max Q Clear Time (g_c+l1), s          | 4.9         | 20.6         | 7.0        | 9.4         | 6.1          | 22.3       | 4.2         | 13.4        |            |            |             |            |
| Green Ext Time (p_c), s               | 0.0         | 5.3          | 0.0        | 2.5         | 0.0          | 5.1        | 0.0         | 3.4         |            |            |             |            |
| Intersection Summary                  |             |              |            |             |              |            |             |             |            |            |             |            |
| HCM 6th Ctrl Delay                    |             |              | 23.4       |             |              |            |             |             |            |            |             |            |
| HCM 6th LOS                           |             |              | С          |             |              |            |             |             |            |            |             |            |

|                      | ۶     | <b>→</b> | •     | •     | <b>←</b> | •     | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ        | 4     |
|----------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|-------------|----------|-------|
| Lane Group           | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT      | SBR   |
| Lane Configurations  | 7     | <b>^</b> | 7     | ሻ     | <b>^</b> | 7     | ሻ     | <b>^</b> | 7           | ሻ           | <b>^</b> | 7     |
| Traffic Volume (vph) | 147   | 1126     | 127   | 153   | 1123     | 55    | 220   | 568      | 175         | 154         | 638      | 184   |
| Future Volume (vph)  | 147   | 1126     | 127   | 153   | 1123     | 55    | 220   | 568      | 175         | 154         | 638      | 184   |
| Turn Type            | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  | pm+pt | NA       | Perm        | pm+pt       | NA       | Perm  |
| Protected Phases     | 5     | 2        |       | 1     | 6        |       | 3     | 8        |             | 7           | 4        |       |
| Permitted Phases     | 2     |          | 2     | 6     |          | 6     | 8     |          | 8           | 4           |          | 4     |
| Detector Phase       | 5     | 2        | 2     | 1     | 6        | 6     | 3     | 8        | 8           | 7           | 4        | 4     |
| Switch Phase         |       |          |       |       |          |       |       |          |             |             |          |       |
| Minimum Initial (s)  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0        | 5.0         | 10.0     | 10.0  |
| Minimum Split (s)    | 9.6   | 32.4     | 32.4  | 9.6   | 32.4     | 32.4  | 9.6   | 32.4     | 32.4        | 9.6         | 32.4     | 32.4  |
| Total Split (s)      | 9.6   | 36.5     | 36.5  | 9.8   | 36.7     | 36.7  | 11.3  | 33.2     | 33.2        | 10.5        | 32.4     | 32.4  |
| Total Split (%)      | 10.7% | 40.6%    | 40.6% | 10.9% | 40.8%    | 40.8% | 12.6% | 36.9%    | 36.9%       | 11.7%       | 36.0%    | 36.0% |
| Yellow Time (s)      | 3.6   | 4.4      | 4.4   | 3.6   | 4.4      | 4.4   | 3.6   | 4.4      | 4.4         | 3.6         | 4.4      | 4.4   |
| All-Red Time (s)     | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0         | 1.0         | 1.0      | 1.0   |
| Lost Time Adjust (s) | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0         | 0.0      | 0.0   |
| Total Lost Time (s)  | 4.6   | 5.4      | 5.4   | 4.6   | 5.4      | 5.4   | 4.6   | 5.4      | 5.4         | 4.6         | 5.4      | 5.4   |
| Lead/Lag             | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   | Lead  | Lag      | Lag         | Lead        | Lag      | Lag   |
| Lead-Lag Optimize?   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes         | Yes         | Yes      | Yes   |
| Recall Mode          | None  | None     | None  | None  | None     | None  | None  | None     | None        | None        | None     | None  |
| Act Effct Green (s)  | 37.0  | 31.2     | 31.2  | 37.4  | 31.4     | 31.4  | 31.4  | 23.9     | 23.9        | 29.8        | 23.1     | 23.1  |
| Actuated g/C Ratio   | 0.43  | 0.36     | 0.36  | 0.43  | 0.36     | 0.36  | 0.36  | 0.28     | 0.28        | 0.35        | 0.27     | 0.27  |
| v/c Ratio            | 0.84  | 0.96     | 0.21  | 0.85  | 0.95     | 0.09  | 0.98  | 0.63     | 0.34        | 0.63        | 0.73     | 0.38  |
| Control Delay        | 53.9  | 45.6     | 4.6   | 55.2  | 44.0     | 0.3   | 75.4  | 30.3     | 6.8         | 29.1        | 33.7     | 9.5   |
| Queue Delay          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0         | 0.0      | 0.0   |
| Total Delay          | 53.9  | 45.6     | 4.6   | 55.2  | 44.0     | 0.3   | 75.4  | 30.3     | 6.8         | 29.1        | 33.7     | 9.5   |
| LOS                  | D     | D        | Α     | Е     | D        | Α     | Е     | С        | Α           | С           | С        | Α     |
| Approach Delay       |       | 42.7     |       |       | 43.4     |       |       | 36.3     |             |             | 28.4     |       |
| Approach LOS         |       | D        |       |       | D        |       |       | D        |             |             | С        |       |

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 86.2

Natural Cycle: 95

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 38.6
Intersection Capacity Utilization 87.1%

Intersection LOS: D
ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Norwalk Av. & Florence Av.



|                                                          | ۶          | <b>→</b>  | •         | •         | <b>←</b>  | 4         | 1          | <b>†</b>    | ~          | <b>/</b>   | <b>†</b>   | ✓          |
|----------------------------------------------------------|------------|-----------|-----------|-----------|-----------|-----------|------------|-------------|------------|------------|------------|------------|
| Movement                                                 | EBL        | EBT       | EBR       | WBL       | WBT       | WBR       | NBL        | NBT         | NBR        | SBL        | SBT        | SBR        |
| Lane Configurations                                      | ሻ          | <b>^</b>  | 7         | ሻ         | <b>^</b>  | 7         | ሻ          | <b>^</b>    | 7          | ሻ          | <b>^</b>   | 7          |
| Traffic Volume (veh/h)                                   | 147        | 1126      | 127       | 153       | 1123      | 55        | 220        | 568         | 175        | 154        | 638        | 184        |
| Future Volume (veh/h)                                    | 147        | 1126      | 127       | 153       | 1123      | 55        | 220        | 568         | 175        | 154        | 638        | 184        |
| Initial Q (Qb), veh                                      | 0          | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0          | 0          | 0          | 0          |
| Ped-Bike Adj(A_pbT)                                      | 1.00       |           | 0.98      | 1.00      |           | 1.00      | 1.00       |             | 0.98       | 1.00       |            | 0.98       |
| Parking Bus, Adj                                         | 1.00       | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00       | 1.00        | 1.00       | 1.00       | 1.00       | 1.00       |
| Work Zone On Approach                                    |            | No        |           |           | No        |           |            | No          |            |            | No         |            |
| Adj Sat Flow, veh/h/ln                                   | 1870       | 1870      | 1870      | 1870      | 1870      | 1870      | 1870       | 1870        | 1870       | 1870       | 1870       | 1870       |
| Adj Flow Rate, veh/h                                     | 160        | 1224      | 77        | 166       | 1221      | 39        | 239        | 617         | 138        | 167        | 693        | 135        |
| Peak Hour Factor                                         | 0.92       | 0.92      | 0.92      | 0.92      | 0.92      | 0.92      | 0.92       | 0.92        | 0.92       | 0.92       | 0.92       | 0.92       |
| Percent Heavy Veh, %                                     | 2          | 2         | 2         | 2         | 2         | 2         | 2          | 2           | 2          | 2          | 2          | 2          |
| Cap, veh/h                                               | 210        | 1305      | 571       | 211       | 1314      | 585       | 275        | 930         | 406        | 287        | 896        | 391        |
| Arrive On Green                                          | 0.06       | 0.37      | 0.37      | 0.06      | 0.37      | 0.37      | 0.08       | 0.26        | 0.26       | 0.07       | 0.25       | 0.25       |
| Sat Flow, veh/h                                          | 1781       | 3554      | 1554      | 1781      | 3554      | 1584      | 1781       | 3554        | 1549       | 1781       | 3554       | 1550       |
| Grp Volume(v), veh/h                                     | 160        | 1224      | 77        | 166       | 1221      | 39        | 239        | 617         | 138        | 167        | 693        | 135        |
| Grp Sat Flow(s),veh/h/ln                                 | 1781       | 1777      | 1554      | 1781      | 1777      | 1584      | 1781       | 1777        | 1549       | 1781       | 1777       | 1550       |
| Q Serve(g_s), s                                          | 4.7        | 27.9      | 2.8       | 4.9       | 27.7      | 1.3       | 6.7        | 13.0        | 6.1        | 5.9        | 15.2       | 6.0        |
| Cycle Q Clear(g_c), s                                    | 4.7        | 27.9      | 2.8       | 4.9       | 27.7      | 1.3       | 6.7        | 13.0        | 6.1        | 5.9        | 15.2       | 6.0        |
| Prop In Lane                                             | 1.00       | 400=      | 1.00      | 1.00      | 1011      | 1.00      | 1.00       |             | 1.00       | 1.00       |            | 1.00       |
| Lane Grp Cap(c), veh/h                                   | 210        | 1305      | 571       | 211       | 1314      | 585       | 275        | 930         | 406        | 287        | 896        | 391        |
| V/C Ratio(X)                                             | 0.76       | 0.94      | 0.13      | 0.79      | 0.93      | 0.07      | 0.87       | 0.66        | 0.34       | 0.58       | 0.77       | 0.35       |
| Avail Cap(c_a), veh/h                                    | 210        | 1318      | 576       | 211       | 1327      | 591       | 275        | 1178        | 514        | 287        | 1145       | 499        |
| HCM Platoon Ratio                                        | 1.00       | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00       | 1.00        | 1.00       | 1.00       | 1.00       | 1.00       |
| Upstream Filter(I)                                       | 1.00       | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00       | 1.00        | 1.00       | 1.00       | 1.00       | 1.00       |
| Uniform Delay (d), s/veh                                 | 20.6       | 25.6      | 17.7      | 20.6      | 25.4      | 17.1      | 26.7       | 27.6        | 25.1       | 22.4       | 29.1       | 25.7       |
| Incr Delay (d2), s/veh                                   | 13.8       | 12.7      | 0.1       | 16.3      | 11.6      | 0.0       | 23.4       | 1.0         | 0.5        | 2.0        | 2.5        | 0.5        |
| Initial Q Delay(d3),s/veh                                | 0.0<br>2.6 | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0<br>3.2 | 0.0         | 0.0<br>2.1 | 0.0<br>2.4 | 0.0<br>6.4 | 0.0<br>2.1 |
| %ile BackOfQ(50%),veh/ln<br>Unsig. Movement Delay, s/veh |            | 12.9      | 0.9       | 2.8       | 12.7      | 0.5       | 3.2        | 5.3         | Z. I       | 2.4        | 0.4        | ۷.۱        |
| J ,                                                      | 34.4       | 38.3      | 17.8      | 36.9      | 37.0      | 17 1      | 50.2       | 28.6        | 25.6       | 24.4       | 31.7       | 26.2       |
| LnGrp Delay(d),s/veh<br>LnGrp LOS                        | 34.4<br>C  | აი.ა<br>D | 17.0<br>B | 30.9<br>D | 37.0<br>D | 17.1<br>B | 50.2<br>D  | 20.0<br>C   | 25.0<br>C  | 24.4<br>C  | 31.7<br>C  | 26.2<br>C  |
|                                                          |            | 1461      | D         | U         | 1426      | D         | U          |             | U          | U          | 995        |            |
| Approach Vol, veh/h                                      |            | 36.8      |           |           | 36.4      |           |            | 994<br>33.4 |            |            | 29.7       |            |
| Approach LOS                                             |            | _         |           |           | _         |           |            | _           |            |            |            |            |
| Approach LOS                                             |            | D         |           |           | D         |           |            | С           |            |            | С          |            |
| Timer - Assigned Phs                                     | 1          | 2         | 3         | 4         | 5         | 6         | 7          | 8           |            |            |            |            |
| Phs Duration (G+Y+Rc), s                                 | 9.8        | 36.2      | 11.3      | 26.5      | 9.6       | 36.4      | 10.5       | 27.3        |            |            |            |            |
| Change Period (Y+Rc), s                                  | 4.6        | 5.4       | 4.6       | 5.4       | 4.6       | 5.4       | 4.6        | 5.4         |            |            |            |            |
| Max Green Setting (Gmax), s                              | 5.2        | 31.1      | 6.7       | 27.0      | 5.0       | 31.3      | 5.9        | 27.8        |            |            |            |            |
| Max Q Clear Time (g_c+l1), s                             | 6.9        | 29.9      | 8.7       | 17.2      | 6.7       | 29.7      | 7.9        | 15.0        |            |            |            |            |
| Green Ext Time (p_c), s                                  | 0.0        | 0.9       | 0.0       | 3.5       | 0.0       | 1.2       | 0.0        | 3.6         |            |            |            |            |
| Intersection Summary                                     |            |           |           |           |           |           |            |             |            |            |            |            |
| HCM 6th Ctrl Delay                                       |            |           | 34.5      |           |           |           |            |             |            |            |            |            |
| HCM 6th LOS                                              |            |           | С         |           |           |           |            |             |            |            |            |            |

# ATTACHMENT C EXISTING (2022) QUEUING ANALYSIS WORKSHEETS

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | 4    | <b>†</b> | /    | <b>&gt;</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|------|------|----------|------|-------------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Group Flow (vph)   | 163  | 1028     | 95            | 116  | 1076     | 68   | 159  | 592      | 147  | 71          | 402  | 130  |
| v/c Ratio               | 0.74 | 0.73     | 0.13          | 0.51 | 0.83     | 0.10 | 0.50 | 0.62     | 0.28 | 0.28        | 0.47 | 0.27 |
| Control Delay           | 36.9 | 26.0     | 1.8           | 19.9 | 30.2     | 0.3  | 24.6 | 29.5     | 5.9  | 19.6        | 27.7 | 5.4  |
| Queue Delay             | 0.0  | 0.0      | 0.0           | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0  | 0.0  |
| Total Delay             | 36.9 | 26.0     | 1.8           | 19.9 | 30.2     | 0.3  | 24.6 | 29.5     | 5.9  | 19.6        | 27.7 | 5.4  |
| Queue Length 50th (ft)  | 43   | 241      | 0             | 30   | 255      | 0    | 57   | 147      | 0    | 24          | 94   | 0    |
| Queue Length 95th (ft)  | #148 | 355      | 13            | 65   | #376     | 0    | 99   | 202      | 42   | 50          | 135  | 35   |
| Internal Link Dist (ft) |      | 887      |               |      | 1193     |      |      | 1277     |      |             | 1258 |      |
| Turn Bay Length (ft)    | 140  |          |               | 160  |          |      | 200  |          |      | 200         |      |      |
| Base Capacity (vph)     | 219  | 1457     | 725           | 233  | 1470     | 731  | 320  | 1225     | 634  | 256         | 1225 | 633  |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Reduced v/c Ratio       | 0.74 | 0.71     | 0.13          | 0.50 | 0.73     | 0.09 | 0.50 | 0.48     | 0.23 | 0.28        | 0.33 | 0.21 |

#### Intersection Summary

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                         | •    | -    | •    | •    | •    | •    | 4    | <b>†</b> | ~    | <b>\</b> | ļ    | 4    |
|-------------------------|------|------|------|------|------|------|------|----------|------|----------|------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Group Flow (vph)   | 160  | 1224 | 138  | 166  | 1221 | 60   | 239  | 617      | 190  | 167      | 693  | 200  |
| v/c Ratio               | 0.84 | 0.96 | 0.21 | 0.85 | 0.95 | 0.09 | 0.98 | 0.63     | 0.34 | 0.63     | 0.73 | 0.38 |
| Control Delay           | 53.9 | 45.6 | 4.6  | 55.2 | 44.0 | 0.3  | 75.4 | 30.3     | 6.8  | 29.1     | 33.7 | 9.5  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 53.9 | 45.6 | 4.6  | 55.2 | 44.0 | 0.3  | 75.4 | 30.3     | 6.8  | 29.1     | 33.7 | 9.5  |
| Queue Length 50th (ft)  | 49   | 344  | 0    | 51   | 341  | 0    | 86   | 153      | 6    | 58       | 179  | 19   |
| Queue Length 95th (ft)  | #155 | #514 | 36   | #161 | #510 | 0    | #203 | 208      | 54   | 100      | 240  | 71   |
| Internal Link Dist (ft) |      | 887  |      |      | 1193 |      |      | 1277     |      |          | 1258 |      |
| Turn Bay Length (ft)    | 140  |      |      | 160  |      |      | 200  |          |      | 200      |      |      |
| Base Capacity (vph)     | 191  | 1279 | 650  | 195  | 1287 | 658  | 245  | 1143     | 618  | 266      | 1110 | 591  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.84 | 0.96 | 0.21 | 0.85 | 0.95 | 0.09 | 0.98 | 0.54     | 0.31 | 0.63     | 0.62 | 0.34 |

#### Intersection Summary

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

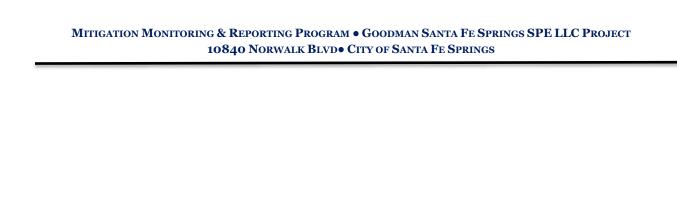
# MITIGATION MONITORING & REPORTING PROGRAM

### GOODMAN SANTA FE SPRINGS SPE LLC PROJECT

10840 NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA



#### **LEAD AGENCY:**


CITY OF SANTA FE SPRINGS
PLANNING AND DEVELOPMENT DEPARTMENT
11710 TELEGRAPH ROAD
SANTA FE SPRINGS, CALIFORNIA 90670

#### REPORT PREPARED BY:

BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING 2211 S. HACIENDA BOULEVARD, SUITE 107 HACIENDA HEIGHTS, CALIFORNIA 91745

**OCTOBER 19,2021** 

SFSP 077



THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

#### MITIGATION MONITORING & REPORTING PROGRAM

#### **INTRODUCTION & FINDINGS**

The Initial Study determined that the proposed project is not expected to have any significant adverse environmental impacts. The following findings can be made regarding the Mandatory Findings of Significance set forth in Section 15065 of the CEQA Guidelines based on the results of this Initial Study:

- The proposed project will not have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of an endangered, rare or threatened species or eliminate important examples of the major periods of California history or prehistory.
- The proposed project *will not* have impacts that are individually limited, but cumulatively considerable.
- The proposed project *will not* have environmental effects which will cause substantially adverse effects on human beings, either directly or indirectly.

In addition, pursuant to Section 21081(a) of the Public Resources Code, findings must be adopted by the decision-maker coincidental to the approval of a Mitigated Negative Declaration, which relates to the Mitigation Monitoring Program. These findings shall be incorporated as part of the decision-maker's findings of fact, in response to AB-3180 and in compliance with the requirements of the Public Resources Code. In accordance with the requirements of Section 21081(a) and 21081.6 of the Public Resources Code, the City of Santa Fe Springs can make the following additional findings:

- A mitigation reporting or monitoring program will be required; and,
- An accountable enforcement agency or monitoring agency shall be identified for the mitigation measures adopted as part of the decision-maker's final determination.

A number of mitigation measures have been recommended as a means to reduce or eliminate potential adverse environmental impacts to insignificant levels. AB-3180 requires that a monitoring and reporting program be adopted for the recommended mitigation measures.

#### **SUMMARY OF MITIGATION MEASURES**

Because light sensitive receptors are found in the vicinity of the project site, the following mitigation is required in order to minimize the potential impacts to the greatest extent possible:

Mitigation Measure No. 1 (Aesthetic-light & Glare). The contractors must ensure that appropriate light shielding is provided for the lighting equipment in the parking area, buildings, and security to limit glare and light trespass. An interior parking and street lighting plan and an exterior photometric plan indicating the location, size, and type of existing and proposed lighting shall also be prepared by the Applicant and submitted to the Planning Department for review and approval. As part of the building permit process as required by the City's Municipal Code. The proposed use must comply with Section 155.432 of the Santa Fe Springs Municipal Code.

The analysis of tribal cultural resources indicated that no significant impacts would result with the implementation of the following mitigation measure

Mitigation Measure No. 2 (Tribal/Cultural Resources). The project Applicant will be required to obtain the services of a qualified Native American Monitor(s) during construction-related ground disturbance activities. Ground disturbance is defined by the Tribal Representatives from the Gabrieleño-Tongva Nation as activities that include, but are not limited to, pavement removal, pot-holing or auguring, boring, grading, excavation, and trenching, within the project area. The monitor(s) must be approved by the tribal representatives and will be present on-site during the construction phases that involve any ground-disturbing activities.

The consultation with the Gabrieleno Band of Mission Indians indicated the following mitigation measures must be implemented:

TCR-1: Retain a Native American Monitor Prior to Commencement of Ground-Disturbing Activities

- A. The project applicant/lead agency shall retain a Native American Monitor from or approved by the Gabrieleño Band of Mission Indians Kizh Nation. The monitor shall be retained prior to the commencement of any "ground-disturbing activity" for the subject project at all project locations (i.e., both on-site and any off-site locations that are included in the project description/definition and/or required in connection with the project, such as public improvement work). "Ground-disturbing activity" shall include, but is not limited to, demolition, pavement removal, potholing, auguring, grubbing, tree removal, boring, grading, excavation, drilling, and trenching.
- B. A copy of the executed monitoring agreement shall be submitted to the lead agency prior to the earlier of the commencement of any ground-disturbing activity, or the issuance of any permit necessary to commence a ground-disturbing activity.
- C. The monitor will complete daily monitoring logs that will provide descriptions of the relevant ground-disturbing activities, the type of construction activities performed, locations of ground-disturbing activities, soil types, cultural-related materials, and any other facts, conditions, materials, or discoveries of significance to the Tribe. Monitor logs will identify and describe any discovered TCRs, including but not limited to, Native American cultural and historical artifacts, remains, places of significance, etc., (collectively, tribal cultural resources, or "TCR"), as well as any discovered Native American (ancestral) human remains and burial goods. Copies of monitor logs will be provided to the project applicant/lead agency upon written request to the Tribe.
- D. On-site tribal monitoring shall conclude upon the latter of the following (1) written confirmation to the Kizh from a designated point of contact for the project applicant/lead agency that all ground-disturbing activities and phases that may involve ground-disturbing activities on the project site or in connection with the project are complete; or (2) a determination and written notification by the Kizh to the project applicant/lead agency that no future, planned construction activity and/or development/construction phase at the project site possesses the potential to impact Kizh TCRs.
- E. Upon discovery of any TCRs, all construction activities in the immediate vicinity of the discovery shall cease (i.e., not less than the surrounding 50 feet) and shall not resume until the discovered TCR has been fully assessed by the Kizh monitor and/or Kizh archaeologist. The Kizh will recover and retain all discovered TCRs in the form and/or manner the Tribe deems appropriate, in the

Tribe's sole discretion, and for any purpose the Tribe deems appropriate, including for educational, cultural and/or historic purposes.

#### TCR-2: Unanticipated Discovery of Human Remains and Associated Funerary Objects

- A. Native American human remains are defined in PRC 5097.98 (d)(1) as an inhumation or cremation, and in any state of decomposition or skeletal completeness. Funerary objects, called associated grave goods in Public Resources Code Section 5097.98, are also to be treated according to this statute.
- B. If Native American human remains and/or grave goods discovered or recognized on the project site, then all construction activities shall immediately cease. Health and Safety Code Section 7050.5 dictates that any discoveries of human skeletal material shall be immediately reported to the County Coroner and all ground-disturbing activities shall immediately halt and shall remain halted until the coroner has determined the nature of the remains. If the coroner recognizes the human remains to be those of a Native American or has reason to believe they are Native American, he or she shall contact, by telephone within 24 hours, the Native American Heritage Commission, and Public Resources Code Section 5097.98 shall be followed.
- C. Human remains and grave/burial goods shall be treated alike per California Public Resources Code section 5097.98(d)(1) and (2).
- D. Construction activities may resume in other parts of the project site at a minimum of 200 feet away from discovered human remains and/or burial goods, if the Kizh determines in its sole discretion that resuming construction activities at that distance is acceptable and provides the project manager express consent of that determination (along with any other mitigation measures the Kizh monitor and/or archaeologist deems necessary). (CEQA Guidelines Section 15064.5(f).)
- E. Preservation in place (i.e., avoidance) is the preferred manner of treatment for discovered human remains and/or burial goods. Any historic archaeological material that is not Native American in origin (non-TCR) shall be curated at a public, non-profit institution with a research interest in the materials, such as the Natural History Museum of Los Angeles County or the Fowler Museum, if such an institution agrees to accept the material. If no institution accepts the archaeological material, it shall be offered to a local school or historical society in the area for educational purposes.
- F. Any discovery of human remains/burial goods shall be kept confidential to prevent further disturbance.

#### TCR-3: Procedures for Burials and Funerary Remains:

A. As the Most Likely Descendant ("MLD"), the Koo-nas-gna Burial Policy shall be implemented. To the Tribe, the term "human remains" encompasses more than human bones. In ancient as well as historic times, Tribal Traditions included, but were not limited to, the preparation of the soil for burial, the burial of funerary objects with the deceased, and the ceremonial burning of human remains.

- B. If the discovery of human remains includes four or more burials, the discovery location shall be treated as a cemetery and a separate treatment plan shall be created.
- C. The prepared soil and cremation soils are to be treated in the same manner as bone fragments that remain intact. Associated funerary objects are objects that, as part of the death rite or ceremony of a culture, are reasonably believed to have been placed with individual human remains either at the time of death or later; other items made exclusively for burial purposes or to contain human remains can also be considered as associated funerary objects. Cremations will either be removed in bulk or by means as necessary to ensure complete recovery of all sacred materials.
- D. In the case where discovered human remains cannot be fully documented and recovered on the same day, the remains will be covered with muslin cloth and a steel plate that can be moved by heavy equipment placed over the excavation opening to protect the remains. If this type of steel plate is not available, a 24-hour guard should be posted outside of working hours. The Tribe will make every effort to recommend diverting the project and keeping the remains in situ and protected. If the project cannot be diverted, it may be determined that burials will be removed.
- E. In the event preservation in place is not possible despite good faith efforts by the project applicant/developer and/or landowner, before ground-disturbing activities may resume on the project for the respectful reburial of the human remains and/or ceremonial objects, project site, the landowner shall arrange a designated site location within the footprint of the
- F. Each occurrence of human remains and associated funerary objects will be stored using opaque cloth bags. All human remains, funerary objects, sacred objects and objects of cultural patrimony will be removed to a secure container on site if possible. These items should be retained and reburied within six months of recovery. The site of reburial/repatriation shall be on the project site but at a location agreed upon between the Tribe and the landowner at a site to be protected in perpetuity. There shall be no publicity regarding any cultural materials recovered.
- G. The Tribe will work closely with the project's qualified archaeologist to ensure that the excavation is treated carefully, ethically and respectfully. If data recovery is approved by the Tribe, documentation shall be prepared and shall include (at a minimum) detailed descriptive notes and sketches. All data recovery data recovery-related forms of documentation shall be approved in advance by the Tribe. If any data recovery is performed, once complete, a final report shall be submitted to the Tribe and the NAHC. The Tribe does NOT authorize any scientific study or the utilization of any invasive and/or destructive diagnostics on human remains.

#### MITIGATION MONITORING MATRIX

The monitoring and reporting for the mitigation measures, including the period for implementation, monitoring agency, and the monitoring action, are identified in Table 1.

| Table 1                              |
|--------------------------------------|
| <b>Mitigation Monitoring Program</b> |

| Witigution Monitoring 110gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                          |                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enforcement<br>Agency                                                                                              | Monitoring<br>Phase                                                                                                      | Verification           |  |  |  |
| Mitigation Measure No. 1 (Aesthetic-light & Glare). The contractors must ensure that appropriate light shielding is provided for the lighting equipment in the parking area, buildings, and security to limit glare and light trespass. An interior parking and street lighting plan and an exterior photometric plan indicating the location, size, and type of existing and proposed lighting shall also be prepared by the Applicant and submitted to the Planning Department for review and approval. As part of the building permit process as required by the City's Municipal Code. The proposed use must comply with Section 155.432 of the Santa Fe Springs Municipal Code. | City of Santa Fe Springs Planning and Development Department  •  (The Applicant is responsible for implementation) | During the project's construction phase.  Mitigation ends when construction is completed.                                | Date:<br>Name & Title: |  |  |  |
| Mitigation Measure No. 2 (Tribal/Cultural Resources). The project Applicant will be required to obtain the services of a qualified Native American Monitor(s) during construction-related ground disturbance activities. Ground disturbance is defined by the Tribal Representatives from the Gabrieleño-Tongva Nation as activities that include, but are not limited to, pavement removal, pot-holing or auguring, boring, grading, excavation, and trenching, within the project area. The monitor(s) must be approved by the tribal representatives and will be present on-site during the construction phases that involve any ground-disturbing activities.                    | City of Santa Fe Springs Planning and Development Department  • (The Applicant is responsible for implementation)  | Prior to the start of any construction related activities.  Mitigation ends at the completion of the construction phase. | Date:<br>Name & Title: |  |  |  |
| Mitigation Measure No. TCR1, TCR2, & TCR-3 (Tribal Cultural Resources). The consultation with the Gabrieleno Band of Mission Indians indicated the following mitigation measures must be implemented:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City of Santa Fe Springs Planning and Development Department  • (The Applicant is responsible for implementation)  | Prior to the issuance of any Grading Permits  Mitigation ends at the completion of the construction phase.               | Date:<br>Name & Title: |  |  |  |



#### City of Santa Fe Springs



April 10, 2023

#### **PUBLIC HEARING**

<u>Categorical Exemption – CEQA Guidelines Section 15301, Class 1</u> Conditional Use Permit Case No. 834

A request for approval to establish, operate and maintain a massage parlor use, occupying a 1,519 square foot unit within the Santa Fe Springs Marketplace, located at 11235 Washington Boulevard (APN: 8176-017-019), in the C-4, Community Commercial, Zone. (In Step Massage)

#### **RECOMMENDATIONS:**

- Open the Public Hearing and receive the staff report and any comments from the public regarding Conditional Use Permit Case No. 834, and thereafter, close the Public Hearing; and
- Find and determine that the proposed use will not be detrimental to persons or properties in the surrounding area or to the City in general, and will be in conformance with the overall purpose and objective of the Zoning Ordinance and consistent with the goals, policies and programs of the City's General Plan; and
- Find that the applicant's CUP request meets the criteria set forth in §155.716 of the City's Zoning Ordinance, for the granting of a Conditional Use Permit; and
- Find and determine that pursuant to Section 15301, Class 1 (Existing Facilities) of the California Environmental Quality Act (CEQA), the project is Categorically Exempt; and
- Approve Conditional Use Permit Case No. 834, subject to the conditions of approval as contained within Resolution No. 230-2023; and
- Adopt Resolution No. 230-2023, which incorporates the Planning Commission's findings and actions regarding this matter.

#### **GENERAL INFORMATION**

A. Applicant: In Step Massage

Attn: Kelly Zhang

11235 Washington Boulevard Santa Fe Springs, CA 90670

B. Property Owner: Golden Family 1197 Revocable Trust c/o

American West Properties, Inc.

Attn: Matt Kolb

22541 Aspan St., Suite H Lake Forest, CA 92630

C. Existing Zone: C-4 (Community Commercial) Zone

Report Submitted By: Alejandro De Loera Date of Report: April 5, 2023

Planning and Development Department

D. General Plan: Mixed Use TOD

E. CEQA Recommendation: Categorically Exempt, Section 15301,

Class 1 (Existing Facilities)

H. Staff Contact: Alejandro De Loera, Planning Consultant

alejandrodeloera@santafesprings.org

#### LOCATION/BACKGOUND

The subject site, located at 11235 Washington Boulevard, is a 1,519 square foot tenant space within a 13,354 square foot multi-tenant commercial building (APN: 8176-017-019), measuring approximately 0.79 acres, and is located on the northwest corner of Washington Boulevard and Duchess Drive. The subject site is part of the Santa Fe Springs Marketplace commercial center. The City's General Plan identifies the land use designation as Mixed Use TOD with an existing zoning designation of Community Commercial (C-4). Surrounding properties to the south and west are within the City's limits and is zoned C-4, while the properties to the north (single and multi-family residential uses) and the east (commercial uses) are outside the City's limits within Unincorporated Los Angeles County.

In Step Massage, a therapeutic foot and whole body massage establishment, is owned and operated by state-licensed massage therapists. In Step has been in business for more than 10 years and has been operating in Santa Fe Springs, southeast of the subject property at 11338 Washington Boulevard. In anticipation of re-locating their business to the subject site. In Step closed their existing facility on March 31, 2023.

#### ZONING REQUIREMENTS

The procedures set forth in Section 155.153 (KK) of the City's Zoning Ordinance, states that massage parlor uses within the C-4, Community Commercial, Zone shall be allowed only after a valid Conditional Use Permit has first been obtained.

| Code Section: | Conditional Use Permit                                                                                                                                        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 155.153 (KK)  | Section 155.153                                                                                                                                               |
|               | The following uses shall be permitted in the C-4 Zone only after a valid conditional use permit has first been issued:  (KK) Massage parlors and similar uses |

#### CONDITIONAL USE PERMIT REQUEST

**Operations:** The proposed operations remain unchanged from their existing facility at 11338 Washington Boulevard. In Step Massage will continue to accept clients by appointment only. Clients are then guided through service offerings, evaluated to determine painful or stressed areas of the body and thereafter selects which massage

Report Submitted By: Alejandro De Loera Date of Report: April 5, 2023

service would benefit them most. The massage options are between 30 and 90 minutes. In addition to the various massage services, the business operations include cleaning or sanitizing massage areas, massage tables, sheets and tools after every use. Linens are also changed, washed and sanitized after every use. In Step Massage also follow strict COVID protocols to protect the overall health and well-being of their clients. Every staff member is required to wear masks and maintain social distancing procedures where possible as well as abide by strict sanitizing and cleaning protocols. In addition to sanitizing equipment, massage supplies are expected to be purchased from Madex Spa Supplies Inc., which includes disposable sheets (water and oil proof), clear & unscented massage oil and unscented massage lotion. Conditions of Approval have been included by Staff to ensure that the massage operation strictly adhere to the requirements established within the City's Massage Establishments Ordinance. In addition, a yearly compliance review will be conducted to ensure continued compliance with the Conditions of Approval.

**Floor Plan:** There are no proposed improvements to the building or site. The applicant is proposing to have 6 massage tables, all in large open massage area with each table individually divided by curtains. Existing walls and ADA accessible restroom are proposed to remain.

**Parking:** The subject site at 11235 Washington is one (1) tenant space in a multi-building commercial center. As such, there are a total of 752 parking stalls provided to visitors of the center, which exceeds the 731 required stalls. Of the 752 parking stalls provided, 19 are accessible standard stalls while 11 are accessible van stalls. The proposed project, therefore, exceeds the minimum parking requirements set forth by the City's Zoning Ordinance. No additional parking is required.

Access and Circulation: Access to the subject site is granted through all of the driveways that serve the Santa Fe Springs Market Place which include: three (3) driveways along Norwalk Boulevard, two (2) along Washington Boulevard, and two (2) along Duchess Drive. There is connectivity throughout the Santa Fe Springs Marketplace to allow users to travel within the commercial center.

#### STREETS AND HIGHWAYS

The subject site is located on the north side of Washington Avenue and west side of Duchess Drive. Washington Boulevard is designated as a Major Arterial Highway and Duchess Drive is designated as a Local Street, within the Circulation Element of the City's General Plan.

#### **ZONING AND LAND USE**

The subject property is zoned C-4 (Community Commercial). The property has a General Plan Land Use designation of Mixed Use TOD. The zoning, General Plan and land use of the surrounding properties are as follows:

|           | Surrounding Zoning, General Plan Designation, Land Use |               |                                                                         |  |  |  |  |  |  |
|-----------|--------------------------------------------------------|---------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| Direction | Zoning<br>District                                     | General Plan  | Land Use (Address/Use)                                                  |  |  |  |  |  |  |
| North     | Residential<br>(LA County)                             | -             | 7901 Duchess Drive Duchess Terrace Apartments (Multifamily Residential) |  |  |  |  |  |  |
| South     | C-4,<br>Community<br>Commercial                        | Mixed Use TOD | 11242 Washington Boulevard<br>Doublz (Food Establishment)               |  |  |  |  |  |  |
| East      | Commercial (LA County)                                 | -             | 11303 Washington Boulevard Jack in the Box (Food Establishment)         |  |  |  |  |  |  |
| West      | C-4,<br>Community<br>Commercial                        | Mixed Use TOD | 11139 Washington Boulevard IHOP (Food Establishment)                    |  |  |  |  |  |  |

#### **GENERAL PLAN CONSISTENCY ANALYSIS**

Approval of the proposed Conditional Use Permit would promote several specific General Plan Goals or Policies as described in "Table 1" below:

Table 1

| General Plan<br>Element | Policy                                                                                                                                                                                                                | Project Consistency                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                | Policy LU-1.2: Economic Diversity: Support a diversified economy with a balance of small and large businesses across a broad range of industries that provide employment, commercial, and experiential opportunities. | The massage parlor use, within the Santa Fe Springs Marketplace, is surrounded by a variety of food and retail businesses; the addition of a personal care service would be complementary to the existing commercial businesses and provide an additional experience for visitors of the plaza. This is consistent with the intention of diversified commercial options for the Mixed Use TOD district. |
| Economic<br>Development | Policy ED-2.1: Business<br>Retention/Expansion Outreach:<br>Prepare a business retention                                                                                                                              | In Step Massage has been a<br>business within the City of Santa Fe<br>Springs for over 10 years and has an                                                                                                                                                                                                                                                                                              |

Report Submitted By: Alejandro De Loera

Date of Report: April 5, 2023

Planning and Development Department

| expansion outreach program to address short-term and long-term disruptive influences in the local and regional economy, and address general business-accommodation issues as they arise. | established local cliental. Due to proposed demolition and development plans at their existing location, In Step Massage is required to relocate and has elected to stay in the City and remain nearby their previous location thus retaining this business would keep this local commodity in the community. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### LEGAL NOTICE OF PUBLIC HEARING

This matter was set for Public Hearing in accordance with the requirements of Sections 65090 through 65096 of the State Planning, Zoning, and Development Laws and the requirements of Sections 155.860 through 155.864 of the City's Municipal Code.

Legal notice of the Public Hearing for the proposed project was sent by first class mail to all property owners whose names and addresses appear on the latest County Assessor's Roll within 500 feet of the exterior boundaries of the subject property on March 30, 2023. The legal notice was also posted at City Hall and the City's Town Center kiosk on March 30, 2023. Said notice was also published in a newspaper of general circulation (Whittier Daily News) on March 30, 2023 as required by the State Zoning and Development Laws and by the City's Zoning Ordinance. As of the date of this report, staff has not received any inquiry regarding the proposed use.

#### **ENVIRONMENTAL ASSESSMENT**

After staff review and analysis, staff made a preliminary determination that the project qualifies for a categorical exemption from CEQA. The specific exemption is Class 1, Section 15301 (Existing Facilities.). Section 15301 exempts minor alterations of existing facilities involving negligible expansion of use. As mentioned previously, the proposed massage use will occupy an existing tenant space within an existing shopping center. Outside of cosmetic changes, the applicant does not intend to make any structural changes to the tenant space. Furthermore, the project will not result in any significant noise, air quality, or water quality impacts. Staff intends to file a Notice of Exemption (NOE) with the Los Angeles County Clerk (if the Planning Commission agrees), finding that the proposed project is Categorically Exempt pursuant to Sections 15301, Class 1 (Existing Facilities) of the California Environmental Quality Act (CEQA).

#### **AUTHORITY OF PLANNING COMMISSION**

The Planning Commission has the authority, subject to the procedures set forth in the City's Zoning Ordinance, to grant a Conditional Use Permit when it has been found that said approval is consistent with the requirements, intent, and purpose of the City's Zoning Ordinance. The Commission may grant, conditionally grant or deny a conditional use permit based on the evidence submitted and upon its own study and knowledge of the circumstances involved, or it may require submission of a revised

Report Submitted By: Alejandro De Loera Date of Report: April 5, 2023

Planning and Development Department

development plan if deemed necessary to preserve the general appearance and welfare of the community.

#### CRITERIA FOR GRANTING A CONDITIONAL USE PERMIT

The Commission should note that in accordance with Section 155.716 of the City's Zoning Ordinance, before granting a Conditional Use Permit, the Commission shall give consideration to the following:

- A) That the proposed use will not be detrimental to persons or property in the immediate vicinity and will not adversely affect the city in general.
- B) Give due consideration to the appearance of any proposed structure and may require revised architectural treatment if deemed necessary to preserve the general appearance and welfare of the community.

In addition to the standard findings required for the granting of a Conditional Use Permit, a massage parlor use is also subject to the requirements of Section 155.724, which have been included as part of the Conditions of Approval.

#### **STAFF REMARKS**

Based on the findings set forth in the attached Resolution (230-2023), Staff finds that the applicant's request meets the criteria set forth in §155.716 of the City's Zoning Ordinance, for the granting of a Conditional Use Permit. Staff is therefore recommending approval of Conditional Use Permit Case No. 834, subject to the conditions of approval.

#### CONDITIONS OF APPROVAL

Conditions of approval for CUP Case No. 834 are attached to Resolution No. 230-2023 as Exhibit A (see Attachment 5)

Way<mark>n</mark>e M. Morrell Director of Planning

#### Attachments:


- 1. Aerial Photograph
- 2. Site Plan
- 3. Public Hearing Notice
- 4. Radius Map for Public Hearing
- 5. Resolution 230-2023
  - a. Exhibit A Conditions of Approval

Report Submitted By: Alejandro De Loera Date of Report: April 5, 2023

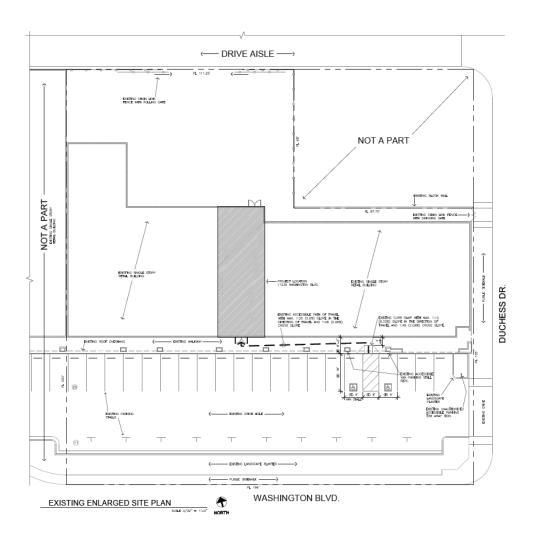
Planning and Development Department

#### ATTACHMENT NO. 1 AERIAL PHOTOGRAPH





#### **AERIAL PHOTOGRAPH**


CONDITIONAL USE PERMIT CASE NO. 834



APN: 8176-017-019 (11235 Washington Boulevard) (Applicant: In Step Massage)

Report Submitted By: Alejandro De Loera Date of Report: April 5, 2023
Planning and Development Department

#### ATTACHMENT NO. 2 SITE PLAN



## ATTACHMENT NO. 3 PUBLIC HEARING

## NOTICE OF PUBLIC HEARING CONDITIONAL USE PERMIT CASE NO. 834

**NOTICE IS HEREBY GIVEN** that the Planning Commission of the City of Santa Fe Springs will hold a Public Hearing to consider the following:

**CONDITIONAL USE PERMIT CASE NO. 834:** A request for approval to allow the establishment, operation and maintenance of a massage parlor use, occupying a 1,519 sq.ft. unit within the Santa Fe Springs Marketplace, located at 11235 Washington Boulevard (APN: 8176-017-019), in the C-4, Community Commercial, Zone.

**THE HEARING** will be held before the Planning Commission of the City of Santa Fe Springs in the Council Chambers of the City Hall, 11710 Telegraph Road, Santa Fe Springs, on Monday, April 10, 2023 at 6:00 p.m.

You may also attend the meeting telephonically or electronically using the following means:

Electronically using Zoom
Go to Zoom.us and click on "Join A Meeting" or use the following link:
<a href="https://zoom.us/i/558333944?pwd=b0FqbkV2aDZneVRnQ3BjYU12SmJIQT09">https://zoom.us/i/558333944?pwd=b0FqbkV2aDZneVRnQ3BjYU12SmJIQT09</a>

Zoom Meeting ID: 558 333 944 Password: 554545

Telephonically Dial: 888-475-4499 Meeting ID: 558 333 944

**CEQA STATUS:** After staff review and analysis, staff intends to file a Notice of Exemption (NOE) with the Los Angeles County Clerk (if the Planning Commission agrees), specifically Class 1, Section 15301 (Existing Facilities) of the California Environmental Quality Act (CEQA). Additionally, the project site is not listed on the Hazardous Waste and Substance Site List (Cortese List) as set forth in Government Code Section 65962.5


**ALL INTERESTED PERSONS** are invited to participate in the Public Hearing before the Planning Commission and express their opinion on the subject item listed above. Please note that if you challenge the afore-mentioned item in court, you may be limited to raising only those issues you or someone else raised at the Public Hearing described in this notice, or in written correspondence delivered to the office of the Commission at, or prior to, the Public Hearing.

**PUBLIC COMMENTS** may be submitted in writing to the Planning Department at City Hall, 11710 Telegraph Road, Santa Fe Springs CA 90670 or otherwise e-mail your comment to the Planning Program Assistant at <a href="TeresaCavallo@santafesprings.org">TeresaCavallo@santafesprings.org</a>.

Please make sure that you submit your written comments by 12:00 p.m. on the day of the Planning Commission meeting.

**FURTHER INFORMATION** on this item may be obtained from Alejandro De Loera, Planning Consultant, via e-mail at: <u>AlejandroDeLoera@santafesprings.org</u> or otherwise by phone at: (562) 868-0511 ext. 7519.

# ATTACHMENT NO. 4 RADIUS MAP



| Conditional Use Permit Case No. 834                                      | Page 11 of 11 |
|--------------------------------------------------------------------------|---------------|
| ATTACHMENT NO. 5 Resolution 230-2023  Exhibit A – Conditions of Approval | Page 11 of 11 |
|                                                                          |               |

#### CITY OF SANTA FE SPRINGS RESOLUTION NO. 230-2023

#### A RESOLUTION OF THE PLANNING COMMISSION OF THE CITY OF SANTA FE SPRINGS REGARDING CONDITIONAL USE PERMIT CASE NO. 834

WHEREAS, a request was filed for Conditional Use Permit (CUP Case No. 834) to allow the establishment, operation, and maintenance of a massage parlor use, occupying a 1,519 square foot unit within the Santa Fe Springs Marketplace, located at 11235 Washington Boulevard, in the C-4, Community Commercial, Zone; and

WHEREAS, the Subject Site is located on the northwest corner of Washington Boulevard and Duchess Drive, with Assessor's Parcel Number of 8176-017-019, as shown in the latest rolls of the Los Angeles County Office of the Assessor; and

WHEREAS, the applicant for the proposed Conditional Use Permit (CUP Case No. 834) is In Step Massage, 11235 Washington Blvd., Santa Fe Springs, CA 90670; and

WHEREAS, the property owner is Golden Family 1197 Revocable Trust c/o American West Properties Inc., 22541 Aspan St. Suite H, Lake Forest, CA 92630; and

WHEREAS, the proposed use, which includes the discretionary review of CUP Case No. 834, is considered a project as defined by the California Environmental Quality Act (CEQA), Article 20, Section 15378(a); and

WHEREAS, based on the information received from the applicant and the provided staff reports, the Planning Commission has found and determined that the proposed project meets the criteria for a Categorical Exemption, pursuant to the California Environmental Quality Act (CEQA), Section 15301-Class 1 (Existing Facilities); and

WHEREAS, the City of Santa Fe Springs Planning and Development Department on March 30, 2023 published a legal notice in the *Whitter Daily News*, a local paper of general circulation, indicating the date and time of the public hearing, and also mailed said public hearing notice on March 30, 2023 to each property owner within a 500 foot radius of the project site in accordance with state law; and

WHEREAS, on April 10, 2023, the City of Santa Fe Springs Planning Commission conducted a duly noticed public hearing and considered public testimony concerning CUP Case No. 834; and

WHEREAS, the City of Santa Fe Springs Planning Commission has considered the application, the written and oral staff report, the General Plan and zoning of the Subject Site, the testimony, written comments, or other materials presented at the Planning Commission Meeting on April 10, 2023 concerning CUP Case No. 834.

NOW, THEREFORE, be it RESOLVED that the PLANNING COMMISSION of the CITY OF SANTA FE SPRINGS does hereby RESOLVE, DETERMINE and ORDER AS FOLLOWS:

#### SECTION I. ENVIRONMENTAL FINDINGS AND DETERMINATION

The proposed use is considered a project under the California Environmental Quality Act (CEQA); and as a result, the project is subject to the City's environmental review process. The project, however, is categorically exempt pursuant to Section 15301 Class 1: Existing Facilities.

Section 15301, Class 1: Existing Facilities consists of the operation, repair, maintenance, permitting, leasing, licensing, or minor alternation of existing public or private structures, facilities, mechanical equipment, or topographical features, involving negligible or no expansion of existing or former use. The proposed massage use will occupy an existing tenant space within an existing shopping center. Outside of cosmetic changes, the applicant does not intend to make any structural changes to the tenant space. The project will not result in any significant noise, air quality or water quality impacts.

Lastly, the subject site is not listed on the Hazardous Waste and Substance Site List (Cortese List) as set forth in Government Code Section 65962.5 and is not identified on the EPA's database (Environfacts).

#### SECTION II. CONDITIONAL USE PERMIT FINDINGS

Pursuant to Section 155.716 of the City of Santa Fe Springs Zoning Ordinance, the Planning Commission shall consider the following findings in their review and determination of the subject Conditional Use Permit (CUP). Based on the available information, the City of Santa Fe Springs Planning Commission hereby make the following findings:

# (A) <u>That the proposed use will not be detrimental to persons or property in the immediate</u> vicinity and will not adversely affect the city in general.

The Subject Site is located within the C-4 (Community Commercial) Zone and has a General Plan land use designation of Mixed Use TOD. A massage parlor use, provided that a CUP is granted, would be consistent with the current zoning and land use designation. Consistency with the City's General Plan is analyzed in Table 1 below. Therefore, if conducted in strict compliance with the conditions of approval and the City's Municipal Code, staff finds that the proposed massage parlor use will be harmonious with adjoining properties and surrounding uses in the area and, therefore, will not be detrimental to persons or property in the immediate vicinity.

Table 1: General Plan Consistency Analysis

| General Plan Element    | Policy                                                                                                                                                                                                                                                                       | Project Consistency                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                | Policy LU-1.2: Economic Diversity: Support a diversified economy with a balance of small and large businesses across a broad range of industries that provide employment, commercial, and experiential opportunities.                                                        | The massage parlor use, within the Santa Fe Springs Marketplace, is surrounded by a variety of food and retail businesses; the addition of a personal care service would be complementary to the existing commercial businesses and provide an additional experience for visitors of the plaza. This is consistent with the intention of diversified commercial options for the Mixed Use TOD district.            |
| Economic<br>Development | Policy ED-2.1: Business Retention/Expansion Outreach: Prepare a business retention expansion outreach program to address short-term and long-term disruptive influences in the local and regional economy, and address general business- accommodation issues as they arise. | In Step Massage has been a business within the City of Santa Fe Springs for over 10 years and has an established local cliental. Due to proposed demolition and development plans at their existing location, In Step Massage is required to relocate and has elected to stay in the City and remain nearby their previous location thus retaining this business would keep this local commodity in the community. |

(B) Give due consideration to the appearance of any proposed structure and may require revised architectural treatment if deemed necessary to preserve the general appearance and welfare of the community.

The exterior of the existing subject site has been maintained consistent with the contemporary Spanish Colonial Style of the Santa Fe Springs Marketplace and is not proposed to change. The plaza has an existing Master Sign Program that requires all tenants to comply with regulations regarding sign color, size, and style, all to be reviewed by Staff prior to installation. Aside from the installation of a new wall sign, no further changes to the façade or appearance of the building are proposed at this time.

#### SECTION III. PLANNING COMMISSION ACTION

The Planning Commission hereby adopts Resolution No. 230-2023 to approve Conditional Use Permit Case No. 834 to allow the establishment, operation, and maintenance a massage parlor use, occupying a 1,519 square foot unit within the Santa Fe Springs Marketplace; and determine that the proposed project is categorically exempt

pursuant to the California Environmental Quality Act (CEQA), Section 15301 – Class 1 (Existing Facilities) for the subject site located at 11235 Washington Boulevard (APN: 8176-017-019), within the C-4, Community Commercial, Zone, subject to conditions attached hereto as Exhibit A.

ADOPTED and APPROVED this 10th day of April, 2023 BY THE PLANNING COMMISSION OF THE CITY OF SANTA FE SPRINGS.

|                                    | Francis Carbajal, Chairperson |
|------------------------------------|-------------------------------|
| ATTEST:                            |                               |
|                                    |                               |
| Teresa Cavallo, Planning Secretary |                               |

## Exhibit A - Conditions of Approval

### Conditional Use Permit (CUP) Case No. 834

11235 Washington Boulevard (APN: 8176-017-019)

#### **ENGINEERING / PUBLIC WORKS DEPARTMENT:**

(Contact: Alex Flores 562.868.0511 x7507)

#### **DEPARTMENT OF FIRE - RESCUE (FIRE PREVENTION DIVISION)**

(Contact: Kevin Yang 562.868.0511 x3811)

1. A readily visible durable sign is posted on the egress side on or adjacent to the door stating: THIS DOOR TO REMAIN UNLOCKED WHEN THIS SPACE IS OCCUPIED. The sign shall be in letters 1 inch high on a contrasting background.

#### **DEPARTMENT OF FIRE - RESCUE (ENVIRONMENTAL DIVISION)**

(Contact: Eric Scott 562.868.0511 x3812)

#### POLICE SERVICES DEPARTMENT:

(Contact: Luis Collazo 562.409.1850 x3335)

- 2. The owner of the establishment shall comply with Chapter 115 of the Santa Fe Springs Municipal Code (SFSMC) and obtain a Regulatory Permit ("License") prior to opening establishment to the general public.
- 3. No person shall practice a massage as a masseur, employee or otherwise, unless they have a valid certificate or wallet card issued by the California Massage Therapy Council.
- 4. The owner of the establishment shall comply with SFSMC Section 115.09 titled "Conduct of Business" at all times.

#### **WASTE MANAGEMENT:**

(Contact: Maribel Garcia 562.409.7569)

- 5. The applicant shall comply with Section 50.51 of the Municipal Code which prohibits any business or residents from contracting any solid waste disposal company that does not hold a current permit from the City.
- 6. All projects are subject to the requirements of Chapter 50 to reuse or recycle 75% of the project waste. For more information, please contact the City's Environmental Consultant, MuniEnvironmental at (562) 432-3700.
- The applicant shall comply with Public Resource Code, Section 42900 et seq. (California Solid Waste Reuse and Recycling Access Act of 1991) as amended, which requires each

development project to provide adequate storage area for the collection/storage and removal of recyclable and green waste materials.

#### **PLANNING AND DEVELOPMENT DEPARTMENT:**

(Contact: Alejandro De Loera 562.868.0511 x7519)

#### STANDARD CONDITIONS

- 8. This approval shall allow the applicant, In Step Massage, to establish, operate, and maintain a massage parlor use within an existing 1,519 sq. ft. unit located at 11235 Washington Boulevard.
- 9. The applicant shall notify, in writing, of any change in ownership within 30 days. The conditions of approval shall be binding to any successors.
- 10. Applicant understands and agrees that all exterior mechanical equipment shall be screened from view on all sides. Additionally, all roof-mounted mechanical equipment and/or duct work which projects above the roof or roof parapet of the proposed development and is visible from adjacent property or a public street shall be screened by an enclosure which is consistent with the architecture of the building in terms of materials and color and also approved by the Director of Planning or designee. If full screening of roof mounted equipment is not designed specifically into the building, the applicant shall submit mechanical plans that includes a roof plan showing the location of all roof mounted equipment and any proposed screening prior to submitting plans to the Building Division for plan check.
  - a. To illustrate the visibility of equipment and/or duct work, the following shall be submitted along with the Mechanical Plans:
    - i. A roof plan showing the location of all roof-mounted equipment;
    - ii. Elevations of all existing and proposed mechanical equipment; and
    - iii. A building cross-section drawing which shows the roof-mounted equipment and its relation to the roof and parapet lines
- 11. All activities shall occur inside the building(s). No portion of the required off-street parking and driveway areas shall be used for outdoor storage of any type or for special-event activities, unless prior written approval is obtained from the Director of Planning, Director of Police Services and the Fire Marshall.
- 12. All vehicles associated with the businesses on the subject property shall be parked on the subject site at all times. Off-site parking is not permitted and would result in the restriction or revocation of privileges granted under this Permit. In addition, any vehicles associated with the property shall not obstruct or impede any traffic.
- 13. The Department of Planning and Development shall first review and approve all sign proposals for the development. The sign proposal (plan) shall include a site plan, building elevation on which the sign will be located, size, style and color of the proposed sign. All

drawings shall be properly dimensioned and drawn to scale. All signs shall be installed in accordance with the sign standards of the Zoning Ordinance and the Sign Guidelines of the City.

- 14. Approved suite numbers/letters or address numbers shall be placed on the proposed building in such a position as to be plainly visible and legible from the street fronting the property. Said numbers shall contrast with their background. The size recommendation shall be 12" minimum.
- 15. Prior to issuance of building permits, the applicant shall comply with the following conditions to the satisfaction of the City of Santa Fe Springs:
  - a. Covenants.
    - 1. Applicant shall provide a written covenant to the Planning Department that, except as owner/developer may have otherwise disclosed to the City, Commission, Planning Commission or their employees, in writing, owner/developer has investigated the environmental condition of the property and does not know, or have reasonable cause to believe, that (a) any crude oil, hazardous substances or hazardous wastes, as defined in state and federal law, have been released, as that term is defined in 42 U.S.C. Section 9601 (22), on, under or about the Property, or that (b) any material has been discharged on, under or about the Property that could affect the quality of ground or surface water on the Property within the meaning of the California Porter-Cologne Water Quality Act, as amended, Water Code Section 13000, et seq
    - 2. Applicant shall provide a written covenant to the City that, based on reasonable investigation and inquiry, to the best of applicant's knowledge, it does not know or have reasonable cause to believe that it is in violation of any notification, remediation or other requirements of any federal, state or local agency having jurisdiction concerning the environmental conditions of the Property.
  - b. Applicant understands and agrees that it is the responsibility of the applicant to investigate and remedy, pursuant to applicable federal, state and local law, any and all contamination on or under any land or structure affected by this approval and issuance of related building permits. The City, Commission, Planning Commission or their employees, by this approval and by issuing related building permits, in no way warrants that said land or structures are free from contamination or health hazards.
  - c. Applicant understands and agrees that any representations, actions or approvals by the City, Commission, Planning Commission or their employees do not indicate any representation that regulatory permits, approvals or requirements of any other federal, state or local agency have

been obtained or satisfied by the applicant and, therefore, the City, Commission, Planning Commission or their employees do not release or waive any obligations the applicant may have to obtain all necessary regulatory permits and comply with all other federal, state or other local agency regulatory requirements. Applicant, not the City, Commission, Planning Commission or their employees will be responsible for any and all penalties, liabilities, response costs and expenses arising from any failure of the applicant to comply with such regulatory requirements.

- 16. The applicant shall require and verify that all contractors and sub-contractors have successfully obtained a Business License with the City of Santa Fe Springs prior to beginning any work associated with the subject project. A business license application may be completed online at https://santafesprings.hdlgov.com. A late fee and penalty will be assessed to any contractor or sub-contractor that fails to obtain a Business License and a Building Permit final or Certificate of Occupancy will not be issued until all fees and penalties are paid in full. For answers to questions or inquiries surrounding the business license process, please call (562) 264-5219 to speak to a customer service representative.
- 17. Prior to occupancy of the property/building, the applicant, and/or their tenant(s), shall obtain a valid business license (AKA Business Operation Tax Certificate), and submit a Statement of Intended Use. Both forms, and other required accompanying forms, may be obtained on the City's website (https://santafesprings.hdlgov.com/).
- 18. Applicant shall not sublet, lease or rent the subject unit without prior approval from the Director of Planning.
- 19. The business operation shall otherwise be substantially in accordance with the plot plan, floor plan, and elevations submitted by the owner and on file with the case. Should any changes be proposed, revised plans must be provided to the planning department for review and approval prior to the implementation of such changes. Please note that certain changes may also require approvals from other departments.
- 20. All other requirements of the City's Zoning Ordinance, Building Code, Property Maintenance Ordinance, State and City Fire Code and all other applicable County, State and Federal regulations and codes shall be complied with.
- 21. Applicant shall comply with the City's "Heritage Artwork in Public Places Program" in conformance with City Ordinance No. 1054.
- 22. Conditional Use Permit Case No. 834 shall be subject to a compliance review in 1 year, on or before April 10, 2024. Approximately three (3) months before April 10, 2024, the applicant shall request, in writing, an extension of the privileges granted herein, provided that the use has been continuously maintained in strict compliance with these conditions of approval. This compliance review is in addition to the yearly review conducted by the Police Services Department.

- 23. The applicant shall indemnify, protect, defend, and hold harmless, the City, and/or any of its officials, officers, employees, agents, departments, agencies, and instrumentalities thereof, from any and all claims, demands, law suits, writs of mandamus, and other actions and proceedings (whether legal, equitable, declaratory, administrative or adjudicatory in nature), and alternative dispute resolutions procedures (including, but not limited to arbitrations, mediations, and other such procedures), (collectively "Actions"), brought against the City, and/or any of its officials, officers, employees, agents, departments, agencies, and instrumentalities thereof, that challenge, attack, or seek to modify, set aside, void, or annul, the any action of, or any permit or approval issued by, the City and/or any of its officials, officers, employees, agents, departments, agencies, and instrumentalities thereof (including actions approved by the voters of the City), for or concerning the project, whether such Actions are brought under the California Environmental Quality Act, the Planning and Zoning Law, the Subdivisions Map Act, Code of Civil Procedure Section 1085 or 1094.5, or any other state, federal, or local statute, law, ordinance, rule, regulation, or any decision of a court of competent jurisdiction. In addition, the applicant shall reimburse the City, its officials, officers, employees, agents, departments, agencies, for any Court costs and attorney's fees which the City, its agents, officers, or employees may be required by a court to pay as a result of such action. It is expressly agreed that the City shall have the right to approve, which approval will not be unreasonably withheld, the legal counsel providing the City's defense, and that applicant shall reimburse City for any costs and expenses directly and necessarily incurred by the City in the course of the defense. City shall promptly notify the applicant of any such claim, action or proceeding, and shall cooperate fully in the defense thereof.
- 24. That the applicant understands and agrees that this approval is subject to modification or revocation as set forth in the Santa Fe Springs Municipal Code. Grounds for modification or revocation include, but are not limited to, Applicant's failure to comply with any condition of approval contained herein.
- 25. That the applicant understands and agrees that if any term or condition of this approval is determined in whole or in part to be invalid or unenforceable, such determination shall not affect the validity or enforceability of any other term or condition contained herein.

#### **FACILITY OPERATIONS**

- 26. Minimum lighting shall be provided in accordance with the Uniform Building Code, and at least one artificial light and not less than 100 watts shall be provided in each enclosed room or booth where massage services are being performed on a patron.
- 27. The hours of operation shall be between 10:00am and 10:00pm everyday (Monday through Sunday) unless otherwise approved by the Director of Planning.
- 28. Minimum ventilation shall be provided in accordance with the Uniform Building Code.

- 29. Adequate equipment for disinfecting and sterilizing instruments used in performing massage shall be provided.
- 30. Hot and cold running water shall be provided at all times.
- 31. Closed cabinets shall be provided, which cabinets shall be utilized for the storage of clean linen
- 32. A minimum of one separate washbasin shall be provided in each massage establishment for the use of employees of any such establishment, which basin shall provide soap or detergent and hot and cold running water at all times and shall be located within or as close as practicable to the area devoted to the performing of massage service. In addition, there shall be provided at each washbasin sanitary towels placed in permanently installed dispensers.
- 33. Pads used on massage tables shall be covered in a workmanlike manner with durable, washable plastic or other waterproof material.

#### **BUSINESS OPERATIONS**

- 34. The subject massage parlor use shall operate within the noise limitations established within Section 155.424 of the City's Zoning Ordinance.
- 35. All employees and massage technicians shall wear clean outer garments which are restricted to the massage establishment. The garments shall provide a complete covering, by fully-opaque material, of the genitals, genital area, buttocks and female breasts of such employees, massage technicians and attendants.
- 36. Each massage establishment shall have at least one person who has a valid Certified Massage Practitioner license on the premises at all times while the establishment is open for business.
- 37. The operator of a massage establishment shall maintain a register of all persons employed as massage technicians and their licenses. Such register shall be made available for inspection by representatives of the city at any time during the establishment's business hours.
- 38. A recognizable and readable sign shall be posted at the main entrance identifying the establishment as a massage establishment, provided that all such signs shall comply with the sign requirements of the city. Such sign shall list services available and the costs of services.
- 39. Clean and sanitary towels and linens shall be provided for each patron of the establishment or each patron receiving massage services. No common use of towels or linens shall be permitted.

- 40. No persons shall enter, be or remain in, any part of a massage establishment while in the possession of, consuming, or using any alcoholic beverage or drug, except pursuant to a prescription for such drug. The owner, operator, responsible managing employee, manager or licensee shall not permit any such person to enter or remain upon such premises.
- 41. The owner, operator, responsible managing employee, manager or licensee of a massage establishment shall display in an open and conspicuous manner on the business premises the license issued therefor and a true and correct copy of the license of each and every massage technician employed therein, and shall provide to every patron who so requests the information contained in such licenses.
- 42. A licensee shall notify the Department of Police Services in writing, within 48 hours of any change in personnel with regard to massage technicians.
- 43. No person owning, operating, or managing a massage establishment shall knowingly cause, allow or license any agent, employee, or any other person under his control or supervision to perform acts prohibited by state or local laws or ordinances. Knowing includes both actual and constructive knowledge.
- 44. The sexual or genital areas of patrons shall be covered with towels, clothes or undergarments when in the presence of an employee, attendant or massage technician.
- 45. It shall be unlawful for any person employed by a massage establishment to place his or her hand upon or to touch with any part of his or her body or to fondle in any manner or to massage a sexual or genital area of any patron.
- 46. If there is evidence that these conditions of approval have not been fulfilled or the use has or have resulted in a substantial adverse effect on the health, and/or general welfare of users of adjacent or proximate property, or have a substantial adverse impact on public facilities or services, the Director of Planning may refer the massage parlor use back to the Planning Commission for review. If upon such review, the Commission finds that any of the results above have occurred, the Commission may modify or revoke the Conditional Use Permit.
- 47. That the applicant shall submit a \$75 check made out to "L.A. County Registrar-Recorder/County Clerk" to the Planning Department to file a Categorical Exemption from California Environmental Quality Act prior to or within two (2) days of Planning Commission approval.

## City of Santa Fe Springs



April 10, 2023

#### **NEW BUSINESS**

Statutorily Exempt - CEQA Guidelines Section 15378 (b)(5)
City of Santa Fe Springs Transportation Study Guidelines

#### RECOMMENDATIONS

- Find and determine that the project is Statutorily Exempt pursuant to Section 15262 of the California Environmental Quality Act (CEQA); and
- Adopt Resolution No. 228-2023 to recommend that the City Council adopt the City of Santa Fe Springs Transportation Study Guidelines.

#### **BACKGROUND**

Historically, the primary metric used to measure local transportation impacts has been Level of Service (LOS). LOS is a grading system with six designations that range from grade "A" to a grade "F", with LOS "A" representing the best conditions (free flowing) to "F" representing the worst conditions (congested), to score how well an intersection operates during morning and evening rush hour. LOS focuses on the potential impact on traffic congestion based on automobile delay and roadway capacity using traffic studies to determine whether a project will create additional delays on surrounding streets and intersections.

In 2013, Senate Bill 743 (SB 743 - Steinberg) was signed into law and changed the way transportation impacts are measured under the California Environmental Quality Act (CEQA). This is due to revamped thinking that the State cannot solve long commutes, traffic congestion, unsustainable land use patterns, and impacts to health, quality of life, and climate, by increasing roadway capacity (because expanded roads quickly fill up again due to pent- up demand) and lessening automobile delay/increasing vehicle speeds (because speeding up traffic flows would induce spreading development farther out, thus making accessibility to destinations more difficult and increasing vehicle miles and emissions).

SB 743 removed LOS as the primary measure of transportation impacts of environmental significance and required the Governor's Office of Planning and Research (OPR) to develop revisions to CEQA Guidelines establishing criteria for determining the significance of transportation impacts. OPR subsequently selected Vehicles Miles Travelled (VMT) as the preferred metric to comply with SB 743, as it is more aligned with the state's goals of reducing GHG emission through promotion of infill development, active transportation and other sustainable land use and transportation projects. As a result, local jurisdictions must transition from using LOS to the VMT methodology when evaluating transportation related impacts of a project for CEQA purposes.

Report Submitted By: Cuong Nguyen

Planning and Development Department

Date of Report: April 5, 2023

ITEM NO. 8

VMT is a number that represents all the miles a vehicle must travel in one day for everyday errands and commutes to work based on land uses and location. A project with a high VMT number is not good for the environment because more vehicle miles traveled, means more greenhouse gas emitted. Places that have high VMT numbers are those where a vehicle is essential for daily trips. In areas where walking, bicycling, and public transit are convenient alternatives to driving, typically have a lower VMT, thus fewer GHG emissions.

The main difference between LOS and VMT analysis is that an LOS analysis focuses *local* transportation impacts while a VMT analysis focuses on *regional* impacts. Simply stated, VMT measures the per capita number of vehicle trips generated by a project and estimates the distances that those vehicles will travel to and from a project while LOS measures congestion levels at intersections.

It is important to note that cities may still use traffic studies and LOS to understand a project's effects on streets and intersections, but those studies can no longer be used for purpose of identifying impacts pursuant to CEQA. The City of Santa Fe Springs will continue to utilize traffic studies and LOS analysis to analyze a project's local transportation impacts.

#### **Consultant Selection**

At the City Council meeting of September 26, 2019, the City Council authorized the Director of Planning to release a Request for Proposal (RFP) to qualified consultants to establish a new Vehicle Miles Traveled (VMT) methodology to evaluate transportation impacts consistent with the California Environmental Quality Act (CEQA) and meet the requirements of Senate Bill (SB) 743.

After releasing the RFP, the City received three (3) proposals. The proposals received were from EPD solutions, Inc., Minagar and Associates and Fehr & Peers. All three proposal were evaluated based on the evaluation criteria and point system as outlined in the City's RFP. Fehr & Peers was selected as the firm to create the new VMT methodology for the City.

On October 19, 2021, the City Council authorized the Mayor or designee to execute a Professional Services Agreement (PSA) with Fehr & Peers. The Planning and Development and Engineering Department staff, along with the City Attorney's office, have continued to work with Fehr & Peers to develop a Transportation Study Guidelines for Santa Fe Springs. The attached Transportation Study Guidelines is representative of said collaborative efforts.

#### **OVERVIEW OF TRANSPORTATION STUDY GUIDELINES**

In response to SB 743 and the termination of the Los Angeles County Congestion Management Plan (CMP) provisions, staff and City's transportation consulting firm,

Report Submitted By: Cuong Nguyen Date of Report: April 5, 2023

Planning and Development Department

Fehr and Peers, has develop a Transportation Study Guideline (TSG) to establish standard procedures for consistent analysis and evaluation.

The TSG is organized into two sections. The first section is focused on regional travel and new procedures related to evaluating VMT, as required by SB 743, and identifying significant impacts for purposes of CEQA. Project screening to evaluate the level of analysis needed, analysis methods, thresholds of significance, and example mitigation options are addressed. The second section is focused on the Local Transportation Assessment (LTA) and includes both vehicular level of service (LOS) analyses and multimodal assessments to document consistency with General Plan policies for safe and efficient local operations.

#### Vehicle Miles Traveled (VMT Analysis)

Pursuant to the adoption of SB 743, the implementation of CEQA guidance for transportation impact assessment in the City of Santa Fe Springs includes the following:

- VMT Screening: The first step in the traffic analysis process is to determine
  when a VMT analysis is required. The City of Santa Fe Springs requires that
  VMT screening be conducted based on the recommendations of the
  Governor's Office of Planning & Research (OPR). OPR recommends that
  projects be screened from a VMT analysis based on their size, location, or
  accessibility to transit. In addition, transportation projects that are not adding
  new travel lanes may be screened from further VMT analysis. Table 1 within
  the Transportation Study Guidelines provides VMT Screening Guidance.
- VMT Analysis Methodology: If the project is not screened from needing a VMT analysis (based on the screening criteria in Table 1), the Southern California Association of Governments (SCAG) regional Travel Demand Model should be used to estimate a project's VMT. OPR recommends that VMT be reported as "Home-Based VMT" per capita for residential projects and "Home-Based Work VMT" per employee for office projects. Per OPR guidance, the City of Santa Fe Springs would evaluate each component of a mixed-use project independently and apply the significance threshold for the land use types proposed. Total VMT and/or VMT per service population (total of residents and employees) is to be reported for area plans, large-scale retail projects, or other project types, such as special event venues.

VMT analysis should provide 'project generated VMT' under the scenarios below. Project generated VMT shall include the VMT generated by the site that is then compared back to the City's threshold of significance. The VMT analysis should consider the potential impacts of the project under both existing and future/cumulative conditions as follows:

- Existing/Baseline Conditions Project-generated VMT should be estimated for the proposed land uses under existing/baseline conditions.
- Existing/Baseline plus Project The project land use would be added to the project Traffic Analysis Zone (TAZ) or a separate TAZ6 would be created to contain the project land uses.
- Cumulative Conditions Cumulative data is available from the SCAG model.
- Cumulative plus Project The project land use would either be added to the project TAZ or a separate TAZ would be created to contain and incorporate the project land uses using the future year SCAG model that reflects cumulative conditions.
- VMT Impact Thresholds: Projects exceeding a level of 15 percent below the Baseline VMT (reported as VMT per capita, per employee, or per service population) are considered to have a significant VMT impact. For regional retail projects, projects resulting in a net increase in total Citywide VMT are considered to have a significant VMT impact. The City of Santa Fe Springs has defined the area encompassed by the City boundary and the City's Sphere of Influence (SOI) as the geographic area for impact analysis relating to residential and employment uses. The scale of analysis for retail projects will be based on changes to VMT for an area to be determined in consultation with City staff. The study area would be dependent on factors such as land use, scale, and proximity to the City's borders. The baseline VMT in the City of Santa Fe Springs and Sphere of Influence (SOI) for the year of 2020 are presented in Table 2A of the Transportation Study Guidelines. The VMT thresholds for projects and plans in the City of Santa Fe Springs are summarized in Table 2B of the Transportation Study Guidelines.
- VMT Mitigation: The types of mitigation that effect VMT are generally those
  that reduce the number of single-occupant vehicles generated by the site
  and/or reduce the distance of trips to/from the site. This can be accomplished
  by changing the land uses being proposed or by implementing transportation
  demand management (TDM) measures. A total of 30 TDM strategies including
  site modifications, programming, and operational changes that a project may
  consider implementing to reduce VMT are detailed in Attachment D (VMT
  Mitigation Strategies) of the Transportation Study Guidelines.

#### Local Transportation Assessment (LTA)

While LOS analysis will no longer be required for CEQA purposes, the City of Santa Fe Springs will continue to require an evaluation to identify potential safety and operational issues when applied against established City criteria. This approach continues to use Level of Service (LOS) to evaluate land development

and infrastructure projects and adds elements to ensure that multimodal transportation considerations are consistent with the City's General Plan policies.

The Local Transportation Assessment (LTA) will analyze the changes in the LOS of designated intersections and/or roadway segments through a progression of scenarios beginning with existing traffic conditions. If any significant degradation of operations is indicated, the LTA will propose feasible improvements that are needed to accommodate the additional travel needs generated by the project.

Triggers and requirements for the LTA are identified in Section 3.1 of the Transportation Study Guidelines. Lastly, in addition to a requirements that the LTA must be prepared by a registered Civil or Traffic Engineer, or qualified transportation professional, the LTA report must include the following information:

- Project Description
- Transportation Circulation Setting
  - Existing and Proposed Site Uses
  - Existing and Proposed Complete Streets Environmental Assessments
  - Existing and Proposed Roadways and Intersections
- Analysis and Identification of Operational Deficiencies
  - Trip Generation Analysis
  - o Trip Distribution
  - Related Projects List
  - LOS analysis and City's Criteria
  - Traffic Signal Warrant Analysis
  - Operational Enhancement Measures
  - On-Site Parking Analysis
  - Access and Circulation Analysis

Lastly, the attached Transportation Study Guidelines concludes with the following list of attachments:

- A. VMT Analysis Flowchart
- B. Glossary of Terms
- C. Detailed VMT Forecasting Information
- D. VMT Mitigation Strategies

#### PREVIOUS PRESENTATIONS BEFORE PLANNING COMMISION

At the regularly scheduled Planning Commission meeting on March 14, 2022 and August 8, 2022, the City's transportation consultant (Fehr & Peers) provided a brief presentation to provide the commissioners with a general overview and update on SB 743 implementation, respectively.

Report Submitted By: Cuong Nguyen Date of Report: April 5, 2023

Planning and Development Department

#### GENERAL PLAN CONSISTENCY

The City's General Plan contains the goals, policies, and programs to address the current and future transportation challenges that the City will confront. The subject Transportation Study Guidelines will allow the city to meet the following goals and policies:

**GOAL C-8:** TRANSPORTATION SYSTEM DESIGNED TO REDUCE VEHICLE MILES TRAVELED

 Policy C.8.1 Reducing Vehicle Miles Traveled. Integrate transportation and land use decisions to reduce vehicle miles traveled and greenhouse gas emissions.

**GOAL C-9**: A STREET NETWORK MANAGED TO MINIMIZE CONGESTION AND TRAFFIC IMPACTS

- Policy C.9.1 Traffic Impact Mitigation. Require new development projects to mitigate off-site traffic impacts consistent with City policy and regulations.
- <u>Policy C.</u>9.2. *Traffic Impact Analysis*. Require new developments to include a traffic impact analysis.
- <u>Policy C.9.4. Traffic Signals</u>. Require new development to install traffic signals at intersections or arterials which, based on individual study, are shown to satisfy traffic signal warrants.

#### **ENVIRONMENTAL REVIEW**

In accordance with the California Environmental Quality Act (California Public Resources Code §§ 21000, et seq., "CEQA") and CEQA regulations (14 California Code of Regulations §§ 15000, et seq.), and CEQA Guideline Section 15378(b)(5), the proposed Transportation Study Guidelines is not a "project" under CEQA as it is an administrative activity of government and will not result in a direct or indirect physical change to the environment.

#### FISCAL IMPACT

The fiscal impact for the City of Santa Fe Springs Transportation Study Guidelines is tied to the consultant cost and city resources required to complete the guidelines. It should be noted that \$75,000 has already been allocated for this project into Account No: 1031-9000 (Planning-Non-Recurring). No Additional Resources are being requested at this time.

#### **STAFF REMARKS**

Staff recommends that the Planning Commission adopt Resolution No. 228-2023, to recommend that the City Council adopt the City of Santa Fe Springs Transportation Study Guidelines.

Wayne M. Morrell Director of Planning

#### Attachments:

- 1. Resolution No. 228-2023
  - a. Exhibit A: City of Santa Fe Springs Transportation Study Guidelines



#### CITY OF SANTA FE SPRINGS RESOLUTION NO. 228-2023

#### A RESOLUTION OF THE PLANNING COMMISSION OF THE CITY OF SANTA FE SPRINGS RECOMMENDING THAT THE CITY COUNCIL OF THE CITY OF SANTA FE SPRINGS ADOPT THE TRANSPORTATION STUDY GUIDELINES

WHEREAS, SB 743, which was signed into law in 2013 and codified in Public Resources Code section 21099, required changes to the California Environmental Quality Act (CEQA) Guidelines regarding the analysis of transportation impacts. SB 743 changed the way transportation impacts are evaluated under CEQA; and

WHEREAS, The Governor's Office of Planning and Research (OPR) was tasked to amend the CEQA Guidelines to provide an alternative to the traditional metric of level of service (LOS), which is based on automobile delay and roadway capacity, in order to promote three statutory goals: 1) the reduction of greenhouse gas (GHG) emissions; 2) the development of multimodal transportation networks; and 3) a diversity of land uses. OPR concluded that the use of Vehicle Miles Traveled (VMT) would adequately analyze a project's transportation impacts while supporting all three statutory goals; and

WHEREAS, On December 28, 2018, the California Natural Resources Agency certified and adopted the revised CEQA Guidelines, adding Section 15064.3 which provides a new methodology for determining the significance of transportation projects. VMT is now the metric for transportation analysis under CEQA and LOS/ automobile delay is no longer considered a significant impact on the environment under CEQA. VMT exceeding an applicable threshold of significance may indicate a significant impact; and

WHEREAS, SB 743 does not prevent the City from continuing to analyze delay or LOS outside of the CEQA review process for other transportation planning or analysis purposes unrelated to CEQA traffic impacts such as land use adjacency, general plan consistency, safety, community benefits, and/or public health pursuant to the City's existing general plan goals; and

WHEREAS, CEQA Guidelines Section 15064.7 encourages each public agency "to develop and public thresholds of significance that the agency uses in determination of the significance of environmental effects" where a threshold is "an identifiable quantitative, qualitative, or performance level of a particular environmental effect…"; and

WHEREAS, the CEQA Guidelines make clear that the City has discretion to choose the most appropriate methodology to evaluate a project's VMT, including whether to express the change in absolute terms, per capita, per household, or in any other measure; and

WHEREAS, the City desires to establish guidelines for the preparation of analysis of impacts under the thresholds for vehicle miles traveled, pursuant to Public Resource Code Section 21082; and

WHERAS, the City further desires to establish guidelines using LOS to evaluate land development and infrastructure projects to identify potential safety and operation issues and ensure that multimodal transportation considerations are consistent with the City's General Plan policies; and

WHEREAS, the City of Santa Fe Springs Planning Commission has considered the written and oral staff report, and any public testimony, written comments, or other materials presented at the Planning Commission Meeting on April 10, 2023 concerning the City of Santa Fe Springs Transportation Study Guidelines.

NOW, THEREFORE, be it RESOLVED that the PLANNING COMMISSION of the CITY OF SANTA FE SPRINGS does hereby RESOLVE, DETERMINE and ORDER AS FOLLOWS:

#### SECTION I. ENVIRONMENTAL FINDINGS AND DETERMINATION

The Planning Commission hereby finds and determines that, in accordance with the California Environmental Quality Act California (CEQA) Guideline Sections 15378 and 15061(b)(3), the proposed Transportation Study Guidelines is not a "project" under CEQA as it will not result in any direct or indirect physical change in the environment and thus can be seen with certainty to have no possibility for causing a significant effect on the environment. Therefore, it has been determined that additional environmental analysis is not necessary to meet the requirements of CEQA.

#### SECTION II. GENERAL PLAN CONSISTENCY

The City's General Plan contains the goals, policies, and programs to address the current and future transportation challenges that the City will confront. The subject Transportation Study Guidelines will allow the city to meet the following goals and policies:

# **GOAL C-8**: TRANSPORTATION SYSTEM DESIGNED TO REDUCE VEHICLE MILES TRAVELED

• <u>Policy C.8.1</u> Reducing Vehicle Miles Traveled. Integrate transportation and land use decisions to reduce vehicle miles traveled and greenhouse gas emissions.

# GOAL C-9: A STREET NETWORK MANAGED TO MINIMIZE CONGESTION AND TRAFFIC IMPACTS

• <u>Policy C.9.1</u> *Traffic Impact Mitigation.* Require new development projects to mitigate off-site traffic impacts consistent with City policy and regulations.

- <u>Policy C.</u>9.2. *Traffic Impact Analysis*. Require new developments to include a traffic impact analysis.
- <u>Policy C.9.4</u>. *Traffic Signals*. Require new development to install traffic signals at intersections or arterials which, based on individual study, are shown to satisfy traffic signal warrants.

#### SECTION III. PLANNING COMMISSION ACTION

The Planning Commission hereby adopts Resolution No. 228-2023 to find and determine that the City of Santa Fe Springs Transportation Study Guidelines is consistent with SB 743 (Senate Bill 743 – Transportation Impacts) and Sections 15064.3 (Determining the Significance of Transportation Impacts) of the CEQA Guidelines, the proposed Transportation Study Guidelines is not a "project" pursuant to CEQA Guidelines Section 15378 and 15061(b)(3), and to recommend that the City Council adopt the City of Santa Fe Springs Transportation Study Guidelines (Exhibit A).

ADOPTED and APPROVED this 10th day of April, 2023 BY THE PLANNING COMMISSION OF THE CITY OF SANTA FE SPRINGS.

Exhibit A
City of Santa Fe Springs Transportation Study Guidelines



# **City of Santa Fe Springs Transportation Study Guidelines**

**March 2023** 

# **Table of Contents**

| 1<br>2 | Introduction CEQA Regional Analysis Overview |      |                                                              | 3<br>4 |  |
|--------|----------------------------------------------|------|--------------------------------------------------------------|--------|--|
| _      | 2.1 Vehicle Miles Traveled (VMT) Analysis    |      |                                                              |        |  |
|        | 2.2                                          |      | T Screening Criteria                                         |        |  |
|        | 2.3                                          |      | T Analysis Methodology                                       |        |  |
|        | 2                                            | 3.2  | VMT Impact Thresholds                                        |        |  |
|        | 2                                            | 3.3  | VMT Mitigation                                               | 14     |  |
| 3      | Local                                        | Tra  | nsportation Assessment Overview                              | 15     |  |
|        | 3.1                                          | Loc  | al Transportation Assessment Study - Triggers & Requirements | 16     |  |
|        | 3.2                                          | Loc  | al Transportation Assessment Report Requirements (Scope)     | 17     |  |
|        | 3.                                           | 2.1  | Project Description                                          | 17     |  |
|        | 3.                                           | 2.2  | Transportation Circulation Setting                           | 17     |  |
|        | 3.                                           | 2.3  | Analysis and Identification of Operational Deficiencies      | 19     |  |
| 4      | Attachments                                  |      |                                                              |        |  |
|        | 4.1                                          | Atta | achment A: VMT Analysis Flowchart                            | 24     |  |
|        | 4.2                                          | Atta | achment B: Glossary of Terms                                 | 26     |  |
|        | 4.3                                          | Atta | achment C: Detailed VMT Forecasting Information              | 31     |  |
|        | 4.                                           | 3.1  | VMT Forecasting Instructions                                 | 31     |  |
|        | 4                                            | 3.2  | Appropriateness Checks                                       | 32     |  |
|        | 4.4                                          | Atta | achment D: VMT Mitigation Strategies                         | 33     |  |

## 1 Introduction

There are four questions in the section XVII of California Environmental Quality Act (CEQA) Transportation Checklist.<sup>1</sup> Would the project:

- a. Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?
- b. Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?
- c. Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
- d. Result in inadequate emergency access?

The second question (b) is referring to the CEQA Guidelines section 15064.3, subdivision (b), which describes potential impacts to Vehicle Miles Traveled (VMT). VMT is the new performance measure to determine significant transportation impacts under CEQA, after California Senate Bill 743 (SB 743) eliminated level of service (LOS).

In response to SB 743 and the termination of Los Angeles County Congestion Management Program (CMP) provisions, the City of Santa Fe Springs has established the following guidelines for the preparation of a Transportation Impact Study (TIS) Report.

The purpose of these guidelines is to establish standard procedures for consistent analysis and evaluation. It is strongly recommended that the transportation professional representing developers, property owners and/or architects consult with City staff prior to commencing the study, making assumptions, and/or performing any traffic data collection.

The document is organized into two sections. The first section is focused on regional travel and new procedures related to evaluating VMT, as required by SB 743, and identifying significant impacts for purposes of CEQA. Project screening to evaluate the level of analysis needed, analysis methods, thresholds of significance, and example mitigation options are addressed. The second section is focused on the Local Transportation Assessment (LTA) and includes both vehicular level of service (LOS) analyses and multimodal assessments to document consistency with General Plan policies for safe and efficient local operations. For more information about the City's goals regarding LOS, local safety, and operational guidance please refer to the Circulation Element of the City's General Plan.

\_

<sup>&</sup>lt;sup>1</sup> 2021 CEQA Statue & Guidelines, Page 340, https://www.califaep.org/docs/CEQA\_Handbook\_2021.pdf

# **2 CEQA Regional Analysis Overview**

## 2.1 Vehicle Miles Traveled (VMT) Analysis

Pursuant to the adoption of SB 743, the implementation of CEQA guidance for transportation impact assessment in the City of Santa Fe Springs includes the following:

- VMT Screening: The first step in the traffic analysis process is to determine when a VMT analysis is required. The City of Santa Fe Springs requires that VMT screening be conducted based on the recommendations of the Governor's Office of Planning & Research (OPR) to determine if a VMT analysis is needed or not. OPR recommends that projects be screened from a VMT analysis based on their size, location, or accessibility to transit. In addition, transportation projects that are not adding new travel lanes may be screened out and do not require further VMT analysis. Details on applying the VMT screening process are provided in Table 1.
- VMT Analysis Methodology: If the project requires aa VMT analysis, the Southern California Association of Governments (SCAG) regional Travel Demand Model should be used to estimate a project's VMT. OPR recommends that VMT be reported as "Home-Based VMT" per capita for residential projects and "Home-Based Work VMT" per employee for office projects. Per OPR guidance, the City of Santa Fe Springs would evaluate each component of a mixed-use project independently and apply the significance threshold for the land use types proposed. Total VMT and/or VMT per service population (total of residents and employees) is to be reported for area plans, large-scale retail projects, or other project types, such as special event venues.
- VMT Impact Thresholds: Projects exceeding a level of 15 percent below the Baseline VMT (reported as VMT per capita, per employee, or per service population) are considered to have a significant VMT impact. For regional retail projects, projects resulting in a net increase in total Citywide VMT are considered to have a significant VMT impact. The City of Santa Fe Springs has defined the area encompassed by the City boundary and the City's Sphere of Influence (SOI) as the geographic area for impact analysis relating to residential and employment uses. The scale of analysis for retail projects will be based on changes to VMT for an area to be determined in consultation with City staff. The study area would be dependent on factors such as land use, scale, and proximity to the City's borders.
- VMT Mitigation: The types of mitigation that effect VMT are generally those that reduce the number of single-occupant vehicles generated by the site and/or reduce the distance of trips to/from the site. This can be accomplished by

changing the land uses being proposed or by implementing transportation demand management (TDM) measures.

Attachment A shows the flowchart of VMT assessment for the City of Santa Fe Springs. The following sections describe the CEQA analysis process in greater detail.

## 2.2 VMT Screening Criteria

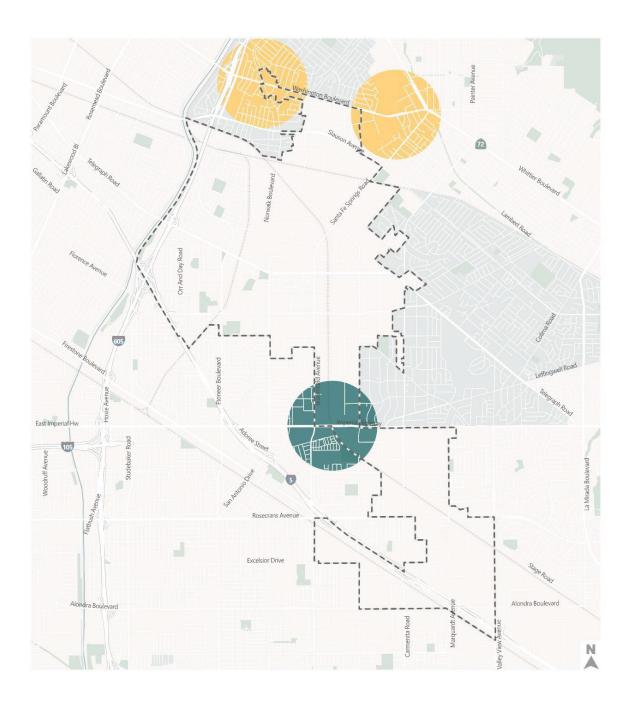
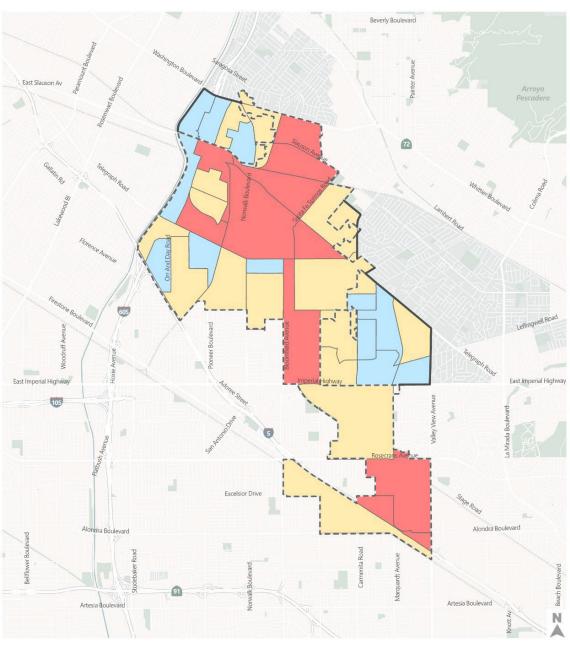
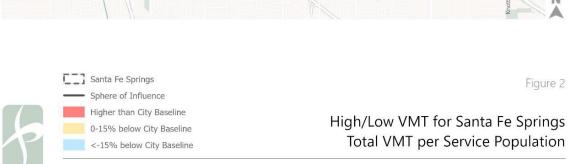
Based on the guidance provided by OPR, land use projects require screening to determine if a VMT analysis is needed based on their size, location, or accessibility to transit. In addition, transportation projects that are not adding new travel lanes may be screened out from further VMT analysis. Screening opportunities in the City of Santa Fe Springs are described in Table 1. A project only needs to satisfy one of the screening criteria to be exempt from requiring further VMT analysis.

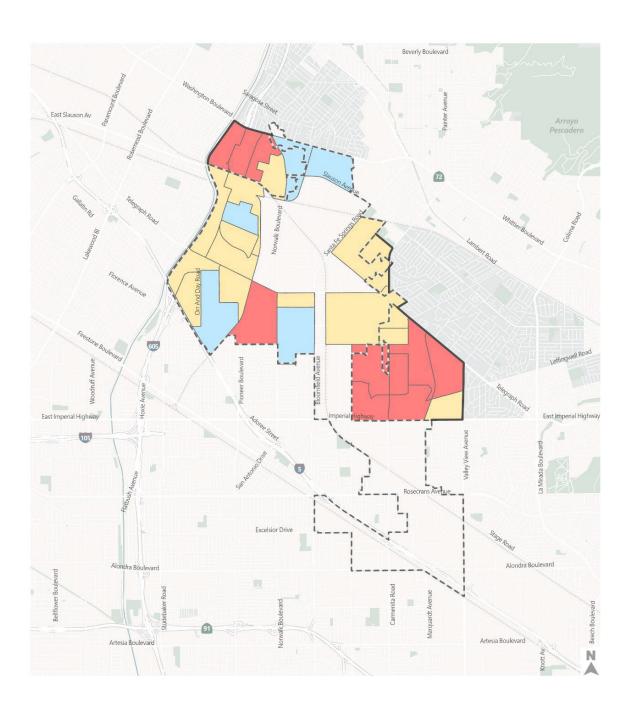
Projects located in a Transit Priority Area (TPA) may be screened out from conducting a VMT analysis because they are presumed to have a less than significant impact absent substantial evidence to the contrary. The City of Santa Fe Springs has determined TPAs to be areas within one-half mile of where two or more 15-minute (during commute hours) bus routes intersect or within one-half mile of a corridor served by 15-minute (during commute hours) bus service.

Figure 1 shows the TPAs within the City of Santa Fe Springs. Transit service may change over time; Figure 1 includes the TPAs in Santa Fe Springs as of May 2022 and includes future conditions when the Eastside Transit Corridor Phase 2 Project (Metro L Line) is complete.<sup>2</sup> As project applicants seek to use this screening criteria, they are responsible for reviewing the current transit service and demonstrating how their project qualifies for this screening criteria. Applying the TPA screening for the future Eastside Transit Corridor Train station would only be appropriate when the anticipated opening year of a project aligns with anticipated opening year of the Metro L Line. Please refer to Figures 2, 3, and 4 for Citywide mapping of high/low VMT areas for daily total VMT, residential VMT, and employment VMT, respectively.

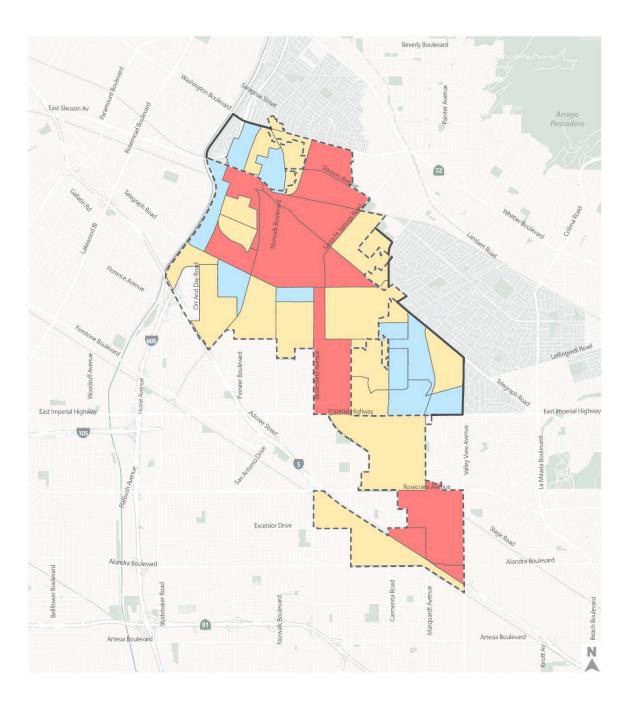
<sup>&</sup>lt;sup>2</sup> Bus schedules were adjusted in August 2020 in response to COVID-19.

| TABLE 1: VMT SCREENING GUIDANCE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Screening Categories              | Project Requirements to Meet Screening Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Project Size                      | A project that generates 110 or fewer daily trips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Locally Serving Retail            | A project that has locally serving retail uses that are 50,000 square feet or less, including specialty retail, shopping center, grocery store, pharmacy, financial services/banks, fitness center or health club, restaurant, and café. If the project contains other land uses, those uses need to be considered under other applicable screening criteria. Proposed projects less than 50,000 square feet that are unique uses or regional draws, may require additional information or evidence that they will be local-serving.                                                                                                                                                                                                       |  |  |  |
| Project Located in a Low VMT Area | A residential or office project that is located in a Traffic Analysis Zone (TAZ) that is already 15% below the City and Sphere of Influence (SOI) Baseline VMT. (See Figures 2-4.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Transit Proximity                 | For existing baseline projects that are located within a ½ mile of where two or more 15-minute (during commute hours) bus routes intersect or within a ½ mile of a corridor served by 15-minute (during commute hours) bus service may be eligible. Future baseline conditions would also include the area located within a ½ mile of the Eastside Transit Corridor Phase 2 Project.  In addition to the above criteria, the project should meet the following criteria:  • A Floor Area Ratio (FAR) of 0.75 or greater  • Is consistent with the applicable SCAG Sustainable Community Strategy (SCS) (as determined by the City)  • Does not provide more parking than required by the City  • Does not replace affordable housing units |  |  |  |
| Affordable Housing                | A residential project that provides affordable housing units; if part of a larger development, only those units that meet the definition of affordable housing satisfy the screening criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Transportation Facilities         | Transportation projects that promote non-auto travel, improve safety, or improve traffic operations at current bottlenecks, such as transit, bicycle and pedestrian facilities, intersection traffic control (e.g., traffic signals or roundabouts), or widening at intersections to provide new turn lanes.                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |



Figure 1




Transit Priority Areas (TPAs) Santa Fe Springs Future & Existing













# 2.3 VMT Analysis Methodology

For projects that are not exempt from a VMT analysis based on the screening criteria in Table 1, a VMT analysis is required and should rely on a reasonable standard of care to develop trip generation and trip length estimates for the project uses. For land use plans (e.g., Specific Plan or General Plan) and projects consisting of residential, office, industrial, or retail, the VMT analysis should be conducted using the SCAG regional Travel Demand Model. For other project types, such as a performing arts center or special event venues, the VMT analysis should be customized to determine the unique trip generation and trip length characteristics of the proposed uses. This approach should be determined in consultation with City of Santa Fe Springs staff.

VMT analysis should provide 'project generated VMT' under the scenarios below. Project generated VMT shall include the VMT generated by the site that is then compared back to the City's threshold of significance. The VMT analysis should consider the potential impacts of the project under both existing and future/cumulative conditions as follows:

#### 2.3.1.1 Existing/Baseline Conditions

Project-generated VMT should be estimated for the proposed land uses under existing/baseline conditions. VMT can be estimated using the SCAG regional Travel Demand Model and should be reported as Total VMT per service population (area plans, large-scale retail projects, or other project types, such as special event venues; see Figure 2), Home-Based VMT per capita (residential projects; see Figure 3), and Home-Based Work VMT per employee (office, industrial or other employment-generating projects; see Figure 4). For land use plans, Total VMT per service population or Total VMT can be used to determine potential impacts. Baseline conditions typically represent the year of the Notice of Preparation (NOP).<sup>3</sup> Interpolation between SCAG's base year model and future year model may be required to identify the VMT representative of the baseline year<sup>4</sup>. Per OPR guidelines, truck-generated VMT analysis is not required for transportation impact assessment.<sup>5</sup> The traffic effects of trucks are studied under the Local Transportation Assessment.

2020 baseline VMT estimates are based on data derived from the SCAG regional Travel Demand Model. Updates should be done on a four-year cycle, following when SCAG updates their most recent RTP/SCS regional model for local agency use.

<sup>&</sup>lt;sup>3</sup> If an EIR is required, baseline conditions should be tied to the NOP date. If an EIR is not required, the baseline may be tied to when an application is deemed complete.

<sup>&</sup>lt;sup>4</sup> Base year and future year SCAG's model information are based on SCAG Regional Transportation Plan (RTP) Scenario years and can be requested from SCAG.

<sup>&</sup>lt;sup>5</sup> Truck-generated VMT is not analyzed under a CEQA transportation impact study, however, it is analyzed as part of CEQA's air quality and greenhouse gas analysis.

#### **Existing/Baseline plus Project**

The project land use would be added to the project Traffic Analysis Zone (TAZ) or a separate TAZ<sup>6</sup> would be created to contain the project land uses. A full model run of the baseline scenario year would be performed and VMT changes would be isolated for the project TAZ and across the full model network. If this scenario results in a less-than-significant impact, then additional cumulative scenario analysis may not be required (see next section).

#### 2.3.1.2 Cumulative Conditions

Cumulative data is available from the SCAG model. However, a less than significant impact under Existing/Baseline conditions would also result in a less than significant cumulative impact as long as the project is consistent with the SCAG Regional Transportation Plan and Sustainable Communities Strategy (RTP/SCS).

#### 2.3.1.3 Cumulative plus Project

The project land use would either be added to the project TAZ or a separate TAZ would be created to contain and incorporate the project land uses using the future year SCAG model that reflects cumulative conditions. VMT should be reported as Total VMT per service population, Home-Based VMT per capita, or Home-Based Work VMT per employee. For land use plans, Total VMT per service population or Total VMT can be used to determine potential impacts.

The baseline and cumulative "plus project" scenarios noted above will summarize project generated VMT (per service population, per capita, or per employee). This data will be used to compare it back to the appropriate benchmark noted in the thresholds of significance.

Project-generated VMT shall be extracted from the travel demand forecasting model using the origin-destination trip matrix and shall multiply that matrix by the final assignment skims. A glossary of terms and a detailed description of this process is attached to these guidelines in Attachment B and C.

## 2.3.2 VMT Impact Thresholds

OPR has identified 15% below the average baseline VMT as the threshold for identifying a significant VMT impact for land use projects and plans. This is based on research conducted to determine the VMT reduction needed to help the State achieve its climate goals. The California Air Resources Board has quantified the need for VMT reduction to meet the State's long-term climate goals and OPR sees reducing VMT to 15% below existing conditions as a reasonable threshold for new development projects. OPR guidance is also provided for transportation projects. For roadway widening and transportation infrastructure projects, a significant impact would occur if the project increased the baseline VMT in the study area. The baseline VMT in the City of Santa Fe Springs and

-

<sup>&</sup>lt;sup>6</sup> Project land use will be added to a separate TAZ accounted separately for other existing land use in the TAZ.

Sphere of Influence (SOI) for year 2020 are presented in Table 2A. The baseline measure for future years will be updated using the SCAG Regional Travel Demand Model accordingly. The VMT thresholds for projects and plans in the City of Santa Fe Springs are summarized in Table 2B.

| TABLE 2A: BASELINE VMT IN THE CITY OF SANTA FE SPRINGS AND SOI <sup>7</sup> |                             |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|
| VMT Metrics                                                                 | Average VMT (2020 Baseline) |  |  |  |  |  |  |  |
| Total VMT per Service Population                                            | 33.1                        |  |  |  |  |  |  |  |
| Home-Based VMT per Capita                                                   | 17.2                        |  |  |  |  |  |  |  |
| Home-Based Work VMT per Employee                                            | 18.3                        |  |  |  |  |  |  |  |

| TABLE 2B: VMT IMPACT THRESHOLDS                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Project Type                                       | Threshold for Determination of Significant VMT Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Residential Project                                | Project exceeds 15% below City + SOI Baseline VMT for home-based VMT per capita                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Office (Commercial or<br>Light Industrial) Project | Project exceeds 15% below City + SOI Baseline VMT for home-based work VMT per employee                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Regional Retail Project <sup>8</sup>               | Project results in a net increase in total VMT in comparison to the City + SOI Baseline VMT                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Mixed-Use Projects                                 | Evaluate each project land use component separately using the criteria above                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Land Use Plans                                     | Plan exceeds 15% below City + SOI Baseline VMT for Total VMT per service population                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Other Land Use Types                               | Project exceeds 15% below City + SOI Baseline VMT. For land use types not listed above, the City can determine the appropriate VMT metric depending on the project characteristics. For projects that are generally producing jobrelated travel, the employment generating VMT (home- based work VMT per employee) can be compared to the baseline. For other projects, the total VMT can be compared to the City + SOI baseline to determine if the net change in Total VMT exceeds the baseline without the project. |  |  |  |  |  |  |

<sup>&</sup>lt;sup>7</sup> SCAG model was used to estimate the Baseline VMT metrics.

<sup>&</sup>lt;sup>8</sup> Per the Governor's Office of Planning and Research (OPR) guidance, regional retail projects are those that exceed 50,000 square feet.

| Transportation Projects | Project results in an increase in VMT (induced VMT due to added capacity to roadway network) in the City in comparison to baseline conditions |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|

### 2.3.3 VMT Mitigation

The types of mitigation that reduce VMT are those that reduce the number of single-occupant vehicles generated by the project. This can be accomplished by changing the land uses being proposed or by implementing Transportation Demand Management (TDM) strategies. TDM strategies reduce VMT by implementing certain types of project site modifications, programming, and operational changes, as detailed in Attachment D.

The effectiveness of identified TDM strategies is based primarily on research documented in the 2021 California Air Pollution Control Officers Association (CAPCOA) publication, *Handbook for Analyzing GHG Emission Reductions, Assessing Climate Vulnerabilities, and Advancing Health and Equity* (CAPCOA, 2021). CAPCOA offers methodology based on preferred literature, along with methodology based on alternative literature, for each strategy. The strategies described in Attachment D are a sample of the options most effective in areas like the City of Santa Fe Springs. For a comprehensive list of available TDM strategies, please refer to Handbook for Analyzing GHG Emission Reductions, Assessing Climate Vulnerabilities, and Advancing Health and Equity. Attachment D to this document provides a comparison of the VMT reductions that can be expected from the strategies in the CAPCOA guidance with anticipated reductions as described in literature that has been published after 2021.

The CAPCOA document contains detailed equations on applying these TDM reductions given the land use type and built environment context. The percent reduction shown in Attachment D should not be directly applied to a project. In addition, some TDM strategies have complementary benefits on reducing VMT and need to be considered in combination and not individually.

Specific mitigation strategies need to be tailored to the project characteristics and their effectiveness needs to be analyzed and documented as part of the environmental review process to determine if impacts could be mitigated or if they would remain significant and unavoidable. Given that research on the effectiveness of TDM strategies is continuing to evolve, feasible mitigation measures should be considered based on the best data available at the time a project is being considered by the City and documented accordingly in the Transportation Impact Study.

The City of Santa Fe Springs prepared a VMT Evaluation Tool and Users' Guide to assist developers in screening and estimating project-generated VMT by land use and calculating VMT reductions associated with certain VMT-reducing mitigation measures. The VMT Evaluation Tool demonstrates how a mitigation measure, or a combination of complementary measures, can affect a project's VMT.

# 3 Local Transportation Assessment Overview

In addition to VMT analysis for CEQA, the City of Santa Fe Springs requires an evaluation to identify potential safety and operational issues when applied against established City criteria. This approach continues to use Level of Service (LOS) to evaluate land development and infrastructure projects and adds elements to ensure that multimodal transportation considerations are consistent with the City's General Plan policies.

In the event a development project significantly degrades the effective use or safety of City streets, improvements, operational enhancements, may be required. Required improvements should consider transit, bicycle, and pedestrian improvements as well as roadway and operational improvements.

The Local Transportation Assessment (LTA) will analyze the changes in the LOS of designated intersections and/or roadway segments through a progression of scenarios beginning with existing traffic conditions. If any significant degradation of operations is indicated, the LTA will propose feasible improvements that are needed to accommodate the additional travel needs generated by the project.

The City standard for the minimum LOS for intersections and roadway segments is:

LOS D or better

The traffic analysis should not use any traffic counts that are more than <u>four months</u> old without the advanced approval of the City Traffic Engineer. If traffic counts taken within the last four months are not available, then new traffic counts shall be collected by a qualified data collection firm. Traffic counts are required to be performed within typical traffic conditions. Traffic count collection shall not be performed during:

- 1. Holidays (or holiday periods)
- 2. Construction periods (when there are existing roadway detours, traffic control, or construction impacting study intersections and roadways)
- 3. Other significant circumstances (e.g. national emergencies or special occasions that may alter typical traffic conditions)

Any work performed on City right-of-way will require a permit. The City can provide a "No fee permit" after receiving a proposed work schedule.<sup>9</sup>

<sup>&</sup>lt;sup>9</sup> City street sweeping schedules will need to be reviewed.

# **3.1 Local Transportation Assessment Study - Triggers**& Requirements

The City is generally concerned with degradations to traffic operations and safety if:

- Traffic generated (autos & truck) by a project alone or cumulatively with other related projects, when added to existing traffic volumes, exceeds certain capacity thresholds of an intersection or roadway, contributes to an unacceptable LOS, or exacerbates an existing congested condition.
- 2. Project generated traffic (autos & truck) interferes with the existing traffic flow (e.g., due to the location of access roads, driveways, and parking facilities).
- 3. Proposed access locations do not provide for adequate safety (e.g., due to limited visibility on curving roadways- stopping site distance may be required)<sup>10</sup>.
- 4. Nonresidential uses generate commuter or truck traffic through a residential area.
- 5. Project generated traffic significantly increases on a residential street and alters its residential character.
- 6. Turning movements (autos & truck) are identified to impact existing and/or future conditions.
- 7. Any vehicle queuing for all movements on principal and collector roadways adjacent or less than 1,000 feet from the project site.

The LTA must be prepared by a registered Civil or Traffic Engineer, or qualified transportation professional. The LTA is needed if a project generates any additional vehicle trips that are assigned to any movement (left/through/right-turns to any intersection approach) at a signalized intersection in the peak hour or where other possible adverse operational degradations may occur, as discussed below. Study locations would be determined in consultation with City staff and should include:

- All primary project driveways
- All signalized intersections within 1,000 feet of primary project driveways, regardless of jurisdictional boundary
- Unsignalized intersections within 1,000 feet of the project site or that serve as project access points regardless of jurisdictional boundary

<sup>&</sup>lt;sup>10</sup> The result of this safety analysis can be used for CEQA checklist item c.

 All signalized intersections within a half mile radius to the project site where the project would add trips, regardless of jurisdictional boundary

# **3.2 Local Transportation Assessment Report Requirements (Scope)**

### 3.2.1 Project Description

The following information is required:

- A description of the project, including those factors which quantify traffic generators, e.g., dwelling units, square feet of office space, persons to be employed, restaurant seats, acres of raw land, etc. For residential developments, the description should indicate the types of residence (e.g., one level or townhouse condominiums, and if its use is for families, adults, or retirees).
- 2. A site plan showing proposed driveways, streets, internal circulation, and any new parking facilities on the project site.
- 3. A study area map showing the site location and the study area relative to other transportation systems.

### 3.2.2 Transportation Circulation Setting

The following information is required:

- 1. <u>Existing and Proposed Site Uses:</u> A description of the permitted and/or proposed uses of the project site in terms of the various zoning and land use categories of the City, and the status and the usage of any facilities currently existing on the site.
- 2. Existing and Proposed Complete Streets Environment Assessment: This section is intended to describe the existing pedestrian, bicycle, and transit facilities in the area of the proposed project and whether the proposed project degrades or augments physical conditions and/or adds substantial pedestrian, bicycle, or transit demand to inadequate facilities. The project should describe and/or provide figures that document existing and planned pedestrian, bicycle, and transit facilities within ¼ mile of the site that may be used by travelers between the project and uses such as parks, government offices, bike/walking trails, schools, bus stops, libraries, medical centers, and other pedestrian generators. The inventory should include missing sidewalks, marked crossings, curb extensions, transit amenities (bench, shade, trash, transit info), bike lanes/routes, and relevant active transportation infrastructure.
- 3. <u>Existing and Proposed Roadways and Intersections:</u> A description of existing streets and roadways, both within the project site (if any) and in the surrounding area. Include

information on the roadway classifications, the number of lanes and roadway widths, signalized intersections, separate turn lanes, and the signal phases for turning movements.

### 3.2.3 Analysis and Identification of Operational Deficiencies

The following information is required in the LTA:

#### **Trip Generation Analysis**

Tabulate the estimated number of daily trips and A.M. and P.M. peak-hour trips generated by the proposed project entering and exiting the site. Trip generation factors and source are to be included. The trip generation rates contained in the latest edition of the Institute of Transportation Engineers Trip Generation manual should generally be used unless better information is available.

There may be a trip reduction due to internal and/or pass-by trips. Internal trip reduction can only be applied for mixed-use types of developments and pass-by trip reduction for retail/commercial types of developments. Internal or pass-by trip reduction assumptions will require analytical support based on verifiable actual similar developments to demonstrate how the figures were derived and will require approval by the City.

#### **Trip Distribution**

Diagrams showing the percentages and volumes of the project and nearby project's A.M. and P.M. peak-hour trips logically distributed on the roadway system must be provided. If it is assumed that new routes will alter traffic patterns, adequate backup including traffic distribution maps must be provided showing how and why these routes will alter traffic patterns.

The study area should include arterial highways, freeways, and intersections generally within a one-mile radius of the project site.

#### **Related Projects List**

A list of related projects that are within a one-half mile radius of the project site and would reasonably be expected to be in place by the project's build out year must be included in the report. Related projects shall include all pending, approved, recorded, or constructed projects that are not occupied at the time of the existing traffic counts. Related projects can be obtained from the Santa Fe Springs Planning department.

A table and a map showing the status, project/zone change/conditional use permit/parcel map/tract number, and the location of each project must be provided.

#### LOS Analysis and City's Criteria

If it appears that the project's generated traffic alone or together with other projects in the area could worsen the LOS of an intersection or roadway, a "before" and "after" LOS analysis is necessary. The latest version of the Highway Capacity Manual (HCM) should be applied to assess existing and future LOS at intersections.

Intersection LOS analysis and calculation work sheets, as well as diagrams showing turning volumes shall be included in the report for the following traffic conditions.

- i. Existing traffic;
- ii. Existing traffic plus ambient growth to the year the project will be completed;
- iii. Traffic in (ii) plus project traffic;
- iv. Traffic in (iii) with the proposed operational enhancements (if necessary);
- v. Traffic in (iii) plus the cumulative traffic of other known developments; and
- vi. Traffic in (v) with the proposed operational enhancements (if necessary)

The project's effect on two-lane roadways should also be analyzed for all the above traffic conditions if those two-lane roadways are used for site access. LOS analysis contained in the Highway Capacity Analysis, Chapter 8, Two-Lane Highways, should be used to evaluate the project's effect.

The City standard for the minimum LOS for intersections and roadway segments is LOS D or better. Intersections in the City that do not meet these targets are considered deficient.

Signalized intersections will require improvements if the following conditions are met:

- For an intersection with LOS D or better, the addition of project traffic results in the degradation of intersection operations to LOS E or F.
- For an intersection with LOS E or F, the addition of project traffic results in any degradation of intersection operations.

Unsignalized intersections will require improvements if the following conditions are met:

- For an intersection with LOS D or better, the addition of project traffic results in the degradation of any individual movement at the intersection to LOS E or F, or for an intersection with LOS E or F, the addition of project traffic results in the degradation of any individual movement, and
- The intersection meets peak hour signal warrants either caused by project volumes, or project volumes are added at an intersection that meets peak hour signal warrants in the baseline scenario(s). Peak hour signal warrants should be determined based on the latest California Manual on Uniform Traffic Control Devices (CA MUTCD).

Roadway segments shall be reviewed on a case-by-case basis. Deficiencies identified to be improved will be determined in coordination with the City Traffic Engineer based on various factors including determined LOS, anticipated street improvements, and LOS at critical intersections along the roadway segment.

#### **Traffic Signals**

The following information is required if the installation of a traffic signal is being considered:

Traffic signal warrant analysis using the State of California Department of Transportation (Caltrans) Peak-Hour (Figures 9-8 and 9-9 of Caltrans Traffic Manual) and Estimated Average Daily (Figure 9-4 of Caltrans Traffic Manual) Traffic Warrant Analysis should be provided. In certain situations, the other available signal warrants may also be required. If the installation of signals is warranted with the addition of the project's traffic, then the installation will be the sole responsibility of the project. If it is warranted with cumulative traffic of the project and other related projects, the following formula should be used to calculate the project percent share.

Project Percentage Share = Project Traffic / (Project + Other Related Projects Traffic)

The project percent share should be based on the peak-hour volumes that warrant signals. If both peak hours satisfy the installation of signals, the average of the two peak-hour volumes should be used in the percent share analysis.

#### **Operational Enhancement Measures**

The following information is required if study intersections or roadway segments are found to be deficient:

Identify feasible operational enhancements to reduce the projects' operational deficiencies to a level below the threshold identified. Also, identify those measures which will be implemented by others. Those measures that are assumed to be implemented by others will be made a condition of approval for the project to be in place prior to issuance of building permits. It is important to note that some of the operational enhancement measures may require additional CEQA analysis (e.g. VMT analysis) and could include the following:

- a. Traffic Engineering Techniques
  - i. Locate access points to optimize visibility and reduce potential conflict.
  - ii. Design parking facilities to avoid queuing into public streets during peak arrival periods.
  - iii. Provide additional off-street parking (e.g. for Transportation Network Companies (TNCs) or commercial vehicle delivery).
  - iv. Dedicate visibility easements to assure adequate sight distance at intersections and driveways.
  - v. Signalize or modify traffic signals at intersections.

- vi. Install left-turn phasing and/or multiple turning lanes to accommodate particularly heavy turning movements.
- vii. Provide left- or right-turn lanes to lessen interference with the traffic flow.
- viii. Prohibit left turns to and from the proposed development.
- b. Contribute to a benefit district to fund major capital improvements
  - i. Construct a grade separation.
  - ii. Improve or construct alternate routes.
  - iii. Complete proposed Capital Projects in the City's Capital Improvement Program.
  - iv. Improve freeway interchanges (bridge, widening, modifications, and etc.)
- c. Transportation System Management (TSM) Techniques<sup>11</sup>
  - i. Establish flexible working hours.
  - ii. Encourage employee use of carpools and public transportation (specific measures must be indicated).
  - iii. Establish preferential parking for carpools.
  - iv. Restrict truck deliveries to Major and Secondary highways and encourage deliveries during the off-peak hours.
  - v. Establish a monitoring program to ensure that project traffic volumes do not exceed projected traffic demand.

#### **On-Site Parking Analysis**

This analysis will address the on-site parking supply versus parking required per City code. If the proposed development is of mixed-use type, a table shall be included presenting each land use, its size, and the code parking requirement. This table should clearly indicate how the code parking was calculated and include the proposed on-site parking supply together with the resultant surplus or deficit from code requirements.

Should the on-site parking supply be less than required by the City code, a detailed explanation justifying a reduction to the code requirement must be included. Note that this does not eliminate

<sup>&</sup>lt;sup>11</sup> Contributions to a benefit district and/or TSM techniques may not be used to lower LOS in the capacity calculations.

the need for any zoning code variance. Shared parking evaluations will be considered when appropriate.

#### **Access and Circulation Analysis**

The project's effects on access points and on-site circulation shall be analyzed. The analysis shall, as appropriate, include the following:

- a. Number of access points proposed for the project site.
- b. Space between driveways and intersections.
- c. Potential signalization of driveways.
- d. On-site stacking distance. (including uses with a drive thru.)
- e. Shared access.
- f. Turn conflicts/restrictions.
- g. Adequate site distance.
- h. Driveway improvements.
- i. Pedestrian connections.
- j. Any other operational characteristics (as identified by City staff).

If the proposed project is a residential or commercial use with privacy gates, the applicant shall provide a stacking analysis for review and approval. The adequacy of the interface with the arterial network will need to be demonstrated and necessary improvements to adjacent intersections may be required.

The LTA report should provide a compilation of any applicable improvements for the project.

# **4 Attachments**

# 4.1 Attachment A: VMT Analysis Flowchart

Procedural

#### **Project** Questions **Flowchart** Steps Decision Analytical process or procedural outcome Step 1 Screening 1. Is the project in a Transit Priority Area? Type A **TPA Screening** 2. Are the following requirements met? Use Santa Fe Springs Transportation Assessment Guidelines (TAG) · Must have a total FAR greater than or equal to 0.75 · Cannot provide more parking than the City Municipal Code Requirement Must be consistent with SCAG RTP/SCS Cannot replace affordable units with a smaller number of moderate- or high-income residential units Process Complete Type B 1. Is the project located in a low VMT area? Low VMT Area Use Santa Fe Springs TAG 2. Are the following requirements met? Screening The project is composed of similar land use types and of a similar density to the land uses within the project TAZ The project is assumed to generate VMT per person similar to those existing uses Note: Review jurisdiction's thresholds of significance for definition of low VMT area. Process Complete Is the project a local-serving project as noted in the Project Type C Type Screening project list in the TIA Guidelines? Project Type Screening These projects include but are not limited to: · Local serving K-12 schools Local-serving retail uses less than 50,000 square feet Community and Religious Assembly Uses Public Services O Process Complete Affordable or supportive housing Projects generating less than 110 daily vehicle trips Note: If the project fulfills Type A, B or C Other projects as approved by the City Traffic Engineer screening, the project is presumed to result in a less-than-significant transportation impact. What is the project-level VMT and its effect on VMT assessment? Step 2 Does the project have a less than significant impact? VMT Use latest version of the SCAG model or local subregional model to Details for VMT Assessment are provided in Santa Fe Springs TAG. Assessment conduct VMT Assessment consistent with Santa Fe Springs TAG Process Complete What are the options to mitigate VMT impacts? Step 3 Developing Note: VMT reductions associated with proposed TDM mitigation measures can be estimated with: Mitigation · CAPCOA reduction equations · Use of Santa Fe Springs TAG to isolate commute VMT Measures Modify the project's O implement TDM O Participate in · Samples and effectiveness estimates in Santa Fe Springs TAG Mitigation Bank or built environment measures to reduce VMT · Engineering judgment combined with substantial evidence as

### Abbreviations and Definitions

CAPCOA = California Air Pollution Control Officers Association FAR = Floor Area Ratio RTP = Regional Transportation Plan

SCAG = Southern California Association of Governments SCS = Sustainable Communities Strategy

TDM = Transportation Demand Management

TIA = Traffic Impact Analysis TPA = Transit Priority Area

presented to and approved by City Traffic Engineer

\*Please note that a Mitigation Bank or Mitigation Exchange program may not be readily available. Check with your local agency.

VMT = Vehicle Miles Traveled

characteristics to

by the project

reduce VMT generated

Mitigation Exchange

to offset impact\*

generated by the project

# **4.2 Attachment B: Glossary of Terms**

| Term                                            | Definition                                                                                                                                                                                                                                                       |  |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Active Transportation                           | A means of getting around that is powered by human energy, primarily walking and biking.                                                                                                                                                                         |  |  |  |
| Alternative<br>Transportation Modes             | Sustainable transportation methods that are alternative to personal motorized vehicles, primarily walking, biking, and riding transit.                                                                                                                           |  |  |  |
| Area Development Policy<br>(ADP)                | A City-adopted implementation policy of an Area Plan.                                                                                                                                                                                                            |  |  |  |
| Area Plan                                       | A City-adopted plan that coordinates transportation infrastructure improvements and land use development in support of a unique vision for a subarea of the City (e.g. an Urban Village Plan).                                                                   |  |  |  |
| Boundary VMT Method<br>or Link based VMT Method | A method used to calculate total VMT on roadways within the City.  VMT per service population, a performance metric for General Plan amendments, is based on this method.                                                                                        |  |  |  |
| Effect                                          | Project-related effects on elements of the transportation system for which no transportation standards or CEQA thresholds of significance have been established by the City. Distinct from "impact".                                                             |  |  |  |
| High-Quality Transit Areas                      | Areas are within half a mile of a high-quality transit corridor or major transit stop.                                                                                                                                                                           |  |  |  |
| High-Quality Transit Corridor                   | A corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours (Pub. Resources Code § 21155 (b)).                                                                                                            |  |  |  |
| Impact                                          | Refer to a project's impacts as determined by the transportation standards or CEQA thresholds of significance established by the City. Distinct from "effect".                                                                                                   |  |  |  |
| Improvement                                     | A change that addresses the effects, particularly adverse effects, of a project on elements of the transportation system for which no transportation standards or CEQA thresholds of significance have been established by the City. Distinct from "mitigation". |  |  |  |
| Induced Trips                                   | Increase in traffic volume that occurs soon after a new road is opened or a previously congested road is widened. Increases in roadway capacity are typically quickly filled up with additional traffic.                                                         |  |  |  |

| Term                                    | Definition                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Internal trips                          | Trips between different land use types within the same development project that are accommodated at the project site. Trips that are not internal are those with the project at one end and other locations at the other end.                                                                                             |  |  |  |
| Intersection<br>Operations Standard     | A measure of automobile vehicle delays through a signalized intersection, graded on a scale A through F.                                                                                                                                                                                                                  |  |  |  |
| Land Use Plan                           | A land use plan, such as a specific plan, that identifies the desirable uses and associated infrastructure to guide changes in zoning and development over time.                                                                                                                                                          |  |  |  |
| Major Transit Stop                      | A rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods (Pub. Resources Code § 21064.3).                            |  |  |  |
| Mitigation                              | A change that addresses the CEQA impacts of a project on elements of the transportation system for which transportation standards or CEQA thresholds of significance have been established. Distinct from "improvement".                                                                                                  |  |  |  |
| Mixed-Use Project                       | A development project that combines two or more land uses.                                                                                                                                                                                                                                                                |  |  |  |
| Mode Share                              | The share of all person-trips to and from a project taken by each transportation mode (personal motorized vehicles, transit, bicycle, and pedestrian).                                                                                                                                                                    |  |  |  |
| Net Change in Total VMT                 | Difference in total VMT in the area with and without the project.  Performance metric for regional retail projects and transportation projects.                                                                                                                                                                           |  |  |  |
| Origin-Destination (O-<br>D) VMT Method | A method used to calculate the total vehicle-miles traveled a study area (e.g. a development project, the City, or the region) is expected to generate in a day. For a personal motorized vehicle-trip to be included in the VMT calculation using the OD VMT method, one of the trip ends must be within the study area. |  |  |  |
| Peak Hour                               | The highest morning or evening hour of travel reported on a transportation network or street.                                                                                                                                                                                                                             |  |  |  |

| Term                                 | Definition                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Personal Motorized Vehicles          | Mainly personal motor vehicles that transport people rather than goods.                                                                                                                                                                                                                                        |
| Physical VMT Reduction<br>Strategies | Strategies that development projects can physically construct to encourage the shift from driving alone to walking, biking, and riding transit. Include three of the four VMT reduction strategies – project characteristics, multimodal network improvements, and parking measures.                           |
| Project VMT                          | Calculated VMT generation of a development project.                                                                                                                                                                                                                                                            |
| Service Population                   | The sum of residents and workers in an area such as the City.                                                                                                                                                                                                                                                  |
| Sphere of influence                  | Area in which travel patterns are expected to change due to a transportation project.                                                                                                                                                                                                                          |
| Total VMT                            | All vehicle-trips (i.e., passenger and commercial vehicles) assigned on the network within a specific geographic boundary (i.e., model-wide, region-wide, city-wide).                                                                                                                                          |
| Total VMT<br>generated by a project  | All vehicle-trips are traced to the zone or zones of study. This includes internal to internal (II), internal to external (IX), and external to internal (XI) trips. May use final assignment origin-destination (OD) trip tables or production (P) and attraction (A) estimates multiplied by distance skims. |
|                                      | When the model has multiple assignment periods, OD trip tables and congested skims from each period should be used.                                                                                                                                                                                            |

| Term                                      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Total VMT per service population          | Same method as above (Total VMT generated by a project) to estimate VMT and then divide by the population and employment of the zone or zones of study. If the model generates vehicle trips from other sources such as students and visitors, then include those variables in the service population. Note that employment is often used as the independent variable for total vehicle trip generation associated with non-residential land uses. This means that vehicle trips made by people other than the employees are accounted for in the trip rate including visitors, customers, vendors, custodians, and delivery companies. For this reason, it is often difficult to draw conclusions about VMT patterns and use of the metric should be limited to analysis scenarios comparing full model runs typically focused on changes at the sub-regional, city, county, or regional scale. |  |  |  |  |
|                                           | Some trip-based models may not use population and employment as trip generation variables. Instead, they will rely on land uses. A 'correspondence' between the model land use input variables and population and employment rates is required for these types of models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Transportation Demand<br>Management (TDM) | Programmatic measures that discourage drive-alone trips and encourage pedestrian, bicycle, and transit use. One of the four categories of VMT reduction strategies for development projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Trip Cap                                  | A maximum number of vehicle-trips that a development project is allowed to generate in a day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Trip Adjustments                          | Effort to reduce the number of vehicle-trips to and from a project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Trip Assignment                           | An assignment of vehicle-trips to transportation facilities based on trip distribution percentages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Trip Distribution                         | A forecast of the travel direction of vehicle-trips to and from a project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Trip Generation                           | The estimated total number of vehicle-trips to and from a project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Vehicle-Miles Traveled                    | The total miles of travel by personal motorized vehicles in a day. A measure on which a project' transportation impact(s) are based.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| VMT per Capita                            | The sum of VMT for personal motorized vehicle-trips made by all residents of a development project, divided by the total number of residents of the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

| Term             | Definition                                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VMT per Employee | The sum of VMT for personal motorized vehicle-trips made by all workers of an office or industrial development project, divided by the total number of workers at the project. |

# **4.3 Attachment C: Detailed VMT Forecasting Information**

This section provides detailed VMT forecasting instructions for use with the Southern California Association of Governments (SCAG) Travel Demand Model. Please note that SCAG periodically updates the travel demand model and the latest version available should be utilized for VMT assessment in the City.

The SCAG travel demand model is a trip-based model that generates daily person trip-ends for each TAZ across various trip purposes (Home-based-work, home-based-other, and non-home-based for example) based on population, household, and employment variables. This may create challenges for complying with the VMT guidance because trip generation is not directly tied to specific land use categories. The following methodology addresses this particular challenge among others.

Production and attraction trip-ends are separately calculated for each traffic analysis zone (TAZ or zone), and generally: production trip-ends are generated by residential land uses and attraction trip-ends are generated by non-residential land uses. Focusing on residential and employment land uses, the first step to forecasting VMT requires translating the land use into model terms, the closest approximations are:

- Residential: home-based production trips
- Employment: home-based work attraction trips

Note that this excludes all non-home-based trips including work-based other and other-based other trips.

The challenges with computing VMT for these two types of trips in a trip-based model are 1) production and attraction trip-ends are not distinguishable after the productions/attractions (PA) to origin/destination (OD) conversion process and 2) trip purposes are not maintained after the mode choice step. For these reasons, it is not possible to use the VMT results from the standard vehicle assignment (even using a select zone re-assignment). A separate post-process must be developed to re-estimate VMT for each zone that includes trip-end types and trip purposes. In order to provide the most accurate estimates possible, the recommended approach to estimating VMT is outlined below. Deviating from this approach will require justification and approval from the City Traffic Engineer.

## **4.3.1 VMT Forecasting Instructions**

This approach will calculate total Origin/Destination (OD) VMT using standard SCAG model output files. The OD method for calculating total VMT includes all vehicle trips that start in a specific traffic analysis zone, and all vehicle trips that end in a specific traffic analysis zone. The major steps of this approach are listed as follows:

- Re-skim final loaded congested networks and adjust the external skim for each mode and time period to account for truncated trips
- Multiply appropriate distance skim matrices by OD trip matrices to estimate VMT by time period
- Sum matrices by time period and mode to calculate daily automobile VMT
- Calculate automobile VMT for individual TAZs

## **4.3.2 Appropriateness Checks**

The number of vehicle trips from the total VMT estimation should match as closely as possible with the results from the traditional model process. The estimated results should be checked against the results from a full model run to understand the degree of accuracy. Note that these custom processes may or may not include full lengths of IX/XI trips (trips with origins or destinations outside of the model roadway network) or special generator trips (airport, seaport, stadium, etc.).

When calculating VMT for comparison at the study area, citywide, or regional geography, the same methodology that was used to estimate project specific VMT should be used. The VMT for these comparisons can be easily calculated by aggregating the row or column totals for all zones that are within the desired geography.

| City of | Santa  | Fe S | Springs      | Transportation | Study | Guidelines |
|---------|--------|------|--------------|----------------|-------|------------|
| City Ci | Sarrea |      | <b>5</b> p95 | Transportation | Juan  | Caracinics |

# 4.4 Attachment D: VMT Mitigation Strategies

| Method                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                      | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHG Handbook Calculation<br>Notes                                                                                                                                                                                                                  | Literature or Evidence Cited                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Employment Me                                                                                        | easures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                             |                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |
| Implement<br>Commute Trip<br>Reduction<br>Program<br>(Voluntary)                                     | This measure will implement a voluntary commute trip reduction (CTR) program with employers. CTR programs discourage single-occupancy vehicle trips and encourage alternative modes of transportation such as carpooling, taking transit, walking, and biking, thereby reducing VMT and GHG emissions.  A multi-strategy program implemented by employers on a voluntary basis. The measure must include elements such as:  Carpooling encouragement Ridesharing Discounted transit Guaranteed ride home | Yes                             | Retail<br>Office<br>Industrial<br>Mixed-Use | T-5                                                        | Up to 4%<br>(GHG<br>Handbook)          | Employer costs may include recurring costs for transit subsidies, capital and maintenance costs for the alternative transportation infrastructure, and labor costs for staff to manage the program. Where the local municipality has a VMT reduction ordinance, costs may include the labor costs for government staff to track the efficacy of the program.                                                                                                                                                                                                                                                            | The TDM calculation should be based on the effectiveness of the program and not each individual measure to avoid double-counting. To avoid double-counting, this measure cannot be applied alongside the Mandatory Commute Trip Reduction Program. | Based Trip Reduction Programs and Vanpools on Passenger<br>Vehicle Use and Greenhouse Gas Emissions. September. Available:<br>https://ww2.arb.ca.gov/sites/default/files/2020-                                                      |
| Implement<br>Commute Trip<br>Reduction<br>Program<br>(Mandatory<br>Implementation<br>and Monitoring) | A similar program to the Voluntary one described above, but where participation is required. A reduction goal is specified and ongoing monitoring and reporting assess the program's effectiveness.                                                                                                                                                                                                                                                                                                      | Yes                             | Retail<br>Office<br>Industrial<br>Mixed-Use | T-6                                                        | Up to 26%<br>(GHG<br>Handbook)         | Employer costs may include recurring, direct costs for transit subsidies, capital and maintenance costs for alternative transportation infrastructure, and labor costs for staff to manage the program. If the local municipality has a mandatory VMT reduction ordinance, additional employer costs could include non-compliance penalties if the municipality fines CTR programs that do not meet a VMT goal. Municipal costs may include the labor costs for government staff to track the efficacy of the program, which may be outweighed by revenue generated from fines collected from non-compliant businesses. | The TDM calculation should be based on the effectiveness of the program and not each individual measure to avoid double-counting. To avoid double-counting, this measure cannot be applied alongside the Voluntary Commute Trip Reduction Program. | Nelson/Nygaard Consulting Associates. 2015. Genentech–South San Francisco Campus TDM and Parking Report. June. Available: http://ci-ssf-ca.granicus.com/MetaViewer.php? view_id=2&clip_id=859&meta_id=62028. Accessed: January 2021 |

| Method                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                      | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                           | GHG Handbook Calculation<br>Notes                                                                                                                      | Literature or Evidence Cited                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Price Workplace<br>Parking                                  | This measure will price onsite parking at workplaces. Because free employee parking is a common benefit, charging employees to park onsite increases the cost of choosing to drive to work. This is expected to reduce single-occupancy vehicle commute trips, resulting in decreased VMT, thereby reducing associated GHG emissions.  Implement workplace parking via charging for parking, charge above market rate pricing, and/or validating parking for guests. Reductions apply only if complementary strategies are in place to limit spill-over to on-street parking. Depending on project location and availability of alternative transportation options, implementation of parking measures may require implementing other supportive strategies. | Yes                             | Retail<br>Office<br>Industrial<br>Mixed-Use | T-12                                                       | Up to 20%<br>(GHG<br>Handbook)         | Parking fees would be a direct, recurring cost for employees. Employer costs include labor costs for program management and monitoring, but this may be offset by revenue generated by the program                                                                                                                                                                                                            |                                                                                                                                                        | Lehner, S., Peer, S. 2019. The Price Elasticity of Parking: A Meta-analysis. Transportation Research Part A: Policy and Practice 121 2019. Available: http://sustainabletransportationsc.org/garage/pdf/parking_elasticity.pdf. Accessed: January 2021.                                                 |
| Employee<br>Parking Cash-<br>out                            | Provide employees with a choice of forgoing parking for a cash payment equivalent to the cost of the parking space to the employer. Reductions apply only if complementary strategies are in place to limit spill-over to on-street parking. Depending on project location and availability of alternative transportation options, implementation of parking measures may require implementing other supportive strategies.                                                                                                                                                                                                                                                                                                                                  | Yes                             | Retail<br>Office<br>Industrial<br>Mixed-Use | T-13                                                       | Up to 12%<br>(GHG<br>Handbook)         | Employer costs include the recurring, direct cost for payment to program participants and labor costs for program management. Employees that participate in the program would achieve cost savings through the cash-out benefit and potentially through reduced vehicle ownership and usage.                                                                                                                  | Note this measure can be paired with other commute trip reduction strategies (Measures T-7 through T-11).                                              | Shoup, D. 2005. Parking Cash Out. Planners Advisory Service,<br>American Planning Association.<br>Available: http://shoup.bol.ucla.edu/ParkingCashOut.pdf. Accessed:<br>January 2021.                                                                                                                   |
| Implement<br>Market Price<br>Public Parking<br>(On-Street)  | This measure will price all on-street parking in a given community, with a focus on parking near central business districts, employment centers, and retail centers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Might Apply                     | Retail<br>Office<br>Industrial<br>Mixed-Use | T-24                                                       | Up to 30%<br>(GHG<br>Handbook)         | Municipalities may incur costs from installing the meter network, which may require meters at individual spaces or at more central terminals. There would also be staffing costs to monitor the metered spaces and collect payments. Residents also incur a cost by having to pay for onstreet parking. A portion of costs to the municipality may be offset through revenue collected by the parking system. |                                                                                                                                                        | Pierce, G., and D. Shoup. 2013. Getting the Prices Right: An Evaluation of Pricing Parking by Demand in San Francisco. Journal of the American Planning Association 79(1)67–81. May. Available: https://www.tandfonline.com/doi/pdf/10.1080/01944363.2013.787 307?needAccess=tr Accessed: January 2021. |
| Residential Mea                                             | sures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                             |                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| Integrate<br>Affordable and<br>Below Market<br>Rate Housing | This measure requires below market rate (BMR) housing. BMR housing provides greater opportunity for lower income families to live closer to job centers and achieve a jobs/housing match near transit. It is also an important strategy to address the limited availability of affordable housing that might force residents to live far away from jobs or school, requiring longer commutes. The                                                                                                                                                                                                                                                                                                                                                            | Yes                             | Residential<br>Mixed-Use                    | T-4                                                        | Up to 28.6%<br>(GHG<br>Handbook)       | may have implications for development costs but would                                                                                                                                                                                                                                                                                                                                                         | Reduction applies to all project-generated trips. Multifamily residential units must be permanently dedicated as affordable for lower income families. | California Department of Housing and Community Development. 2021. Income Limits. Available:https://www.hcd.ca.gov/grants-funding/income-limits/index.shtml#:~:text=%E2%80%9CAffordable%20housing%2 0cost%E2%80%9D%20for%20lower,of%20gross%20income%2C%2 0with%20variations. Accessed; November 2021.   |

| Method                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applies at<br>Project<br>Scale? | Applicable<br>Land Use   | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GHG Handbook Calculation<br>Notes                                                                                                                                                | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | quantification method for this measure accounts for VMT reductions achieved for multifamily residential projects that are deed restricted or otherwise permanently dedicated as affordable housing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                          |                                                            |                                        | Measure T-1, Increase Residential Density.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | Institute of Transportation Engineers (ITE). 2021. Trip Generation Manual. 11th Edition. Available: https://www.ite.org/technical-resources/topics/trip-and-parking-generation/. Accessed; November 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Limit Residential<br>Parking Supply                               | This measure will reduce the total parking supply available at a residential project or site. Limiting the amount of parking available creates scarcity and adds additional time and inconvenience to trips made by private auto, thus disincentivizing driving as a mode of travel. Reducing the convenience of driving results in a shift to other modes and decreased VMT and thus a reduction in GHG emissions.  Evidence of the effects of reduced parking supply is strongest for residential developments.  Eliminate or reduce total parking supply for residential projects or sites. This measure does not work if project is within walking distance of unrestricted street parking or other parking is available.                                                                                                                                                                                                                  | Might apply                     | Residential              | T-15                                                       | Up to 13.7%<br>(GHG<br>Handbook)       | parking infrastructure. Some of these savings may be offset by investments in alternative                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parking demand is calculated based on project build square footage or number of dwelling units. Reductions are only applied to VMT generated by residents in mixed-use projects. | California Department of Transportation (Caltrans). 2012. California Household Travel Survey (CHTS). Available: https://www.nrel.gov/transportation/secure-transportation-data/tsdc-california-travel-survey.html. Accessed: January 2021.  Chatman, D. 2013. Does TOD need the T? On the importance of factors other than rail access. Journal of the American Planning Association 79(1). Available: https://trid.trb.org/view/1243004.Accessed: January 2021.  Institute of Transportation Engineers (ITE). 2019. Parking Generation Manual. 5th Edition. February. Available: https://ecommerce.ite.org/IMIS/ItemDetail?iProductCode=PG5-ALL. Accessed: May 2021. |
| Unbundle<br>Residential<br>Parking Costs<br>from<br>Property Cost | This measure will unbundle, or separate, a residential project's parking costs from property costs, requiring those who wish to purchase parking spaces to do so at an additional cost. On the assumption that parking costs are passed through to the vehicle owners/drivers utilizing the parking spaces, this measure results in decreased vehicle ownership and, therefore, a reduction in VMT and GHG emissions. Unbundling may not be available to all residential developments, depending on funding sources.  Reductions apply only if complementary strategies are in place to limit spill-over to on-street parking. Note that this may require coordination with the local agency as proposed supply may not be consistent with policy requirements. Depending on project location and availability of alternative transportation options, implementation of parking measures may require implementing other supportive strategies. | Might apply                     | Residential              | T-16                                                       | Up to 15.7%<br>(GHG<br>Handbook)       | Unbundling residential parking costs from property costs may decrease revenue for property owners. This loss may be partially offset by reduced costs needed to maintain parking facilities with less car occupancy and the potential for non-resident parking as a supplementary income stream. For residents, reduced fees and the ability to go without owning a car is a major cost benefit.  Municipalities also benefit from a reduction of cars on the road, which can lead to lower infrastructure and roadway maintenance costs. | Reductions apply to residential land uses only.                                                                                                                                  | AAA. 2019. Your Driving Costs. September. Available: https://exchange.aaa.com/wp-content/uploads/2019/09/AAA-Your-Driving-Costs-2019.pdf. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017. National Household Travel Survey – 2017 Table Designer. Annual VMT / Vehicle by Count of Household Vehicles in California. Available: https://nhts.ornl.gov/. Accessed: March 2021.  Litman, T. 2020. Parking Requirement Impacts on Housing Affordability. June. Available: https://www.vtpi.org/park-hou.pdf. Accessed: January 2021.                                                                                                               |
| Employment an                                                     | d Residential Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                          |                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Increase<br>Residential<br>Density                                | This measure accounts for the VMT reduction achieved<br>by a project that is designed with a higher density of<br>dwelling units (du) compared to the average residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                             | Residential<br>Mixed-Use | T-1                                                        | 30% (GHG<br>Handbook)                  | Depending on the location, increasing residential density may                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calculations are most accurately quantified for larger developments or                                                                                                           | Ewing, R., K. Bartholomew, S. Winkelman, J. Walters, and D. Chen. 2007. Growing Cooler: The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Method                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> |                       | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GHG Handbook Calculation<br>Notes                                                                                                                           | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | density in the U.S. Increased densities affect the distance people travel and provide greater options for the mode of travel they choose. Increasing residential density results in shorter and fewer trips by single-occupancy vehicles and thus a reduction in GHG emissions. This measure is best quantified when applied to larger developments and developments where the density is somewhat similar to the surrounding area due to the underlying research being founded in data from the neighborhood level.  Applied for projects that provide higher density of dwelling units compared to the national average residential density. |                                 |                                                            |                                                            |                       | increase housing and development costs. However, the costs of providing public services, such as health care, education, policing, and transit, are generally lower in more dense areas where things are closer together. Infrastructure that provides drinking water and electricity also operates more efficiently when the service and transmission area is reduced. Local governments may provide approval streamlining benefits or financial incentives for infill and high-density residential projects. | existing surrounding                                                                                                                                        | Evidence on Urban Development and Climate Change. October. Available: https://www.nrdc.org/sites/default/files/cit_07092401a.pdf. Accessed: January 2021.  Stevens, M. 2016. Does Compact Development Make People Drive Less? Journal of the American Planning Association 83:1(7–18), DOI: 10.1080/01944363.2016.1240044. November. Available: https://www.researchgate.net/publication/309890412_Does_Compact_Development_Make_People_Drive_Less. Accessed: January 2021.                                                                                                                                                                                           |
| Increase Job<br>Density                     | This measure accounts for the VMT reduction achieved by a project that is designed with a higher density of jobs compared to the average job density in the U.S. Increased densities affect the distance people travel and provide greater options for the mode of travel they choose. Increasing job density results in shorter and fewer trips by single-occupancy vehicles and thus a reduction in GHG emissions.  Applied for projects that provide higher density of jobs compared to the national average job density.                                                                                                                   | Yes                             | Retail<br>Office<br>Industrial<br>Mixed-Use                | T-2                                                        | 30% (GHG<br>Handbook) | Areas with increased job density generally have higher economic gross metropolitan product (GMP) and job growth. Prosperity, measured as GMP per job, also grows faster in areas with increased job density. Decreased commute times and car use may also generate funds for public transit and reduce the need for infrastructure spending on road maintenance.                                                                                                                                               | Calculations are most accurately quantified for larger developments or developments with density somewhat similar to the existing surrounding neighborhood. | Institute of Transportation Engineers (ITE). Trip Generation Manual. 10th Edition. Available: https://www.ite.org/technical-resources/topics/trip-and-parking-generation/trip-generation-10th-edition-formats/. Accessed: January 2021.  Stevens, M. 2016. Does Compact Development Make People Drive Less? Journal of the American Planning Association 83:1(7–18), DOI: 10.1080/01944363.2016.1240044. November. Available: https://www.researchgate.net/publication/309890412_Does_Compact_Development_Make_People_Drive_Less. Accessed: January 2021.                                                                                                             |
| Provide Transit-<br>Oriented<br>Development | TOD refers to projects built in compact, walkable areas that have easy access to public transit, ideally in a location with a mix of uses, including housing, retail offices, and community facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                             | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-3                                                        | 31% (GHG<br>Handbook) | TOD reduces car use and car ownership rates, providing cost savings to residents. It can also increase property values and public transit use rates, providing additional revenue to municipalities, as well as open new markets for business development. Increased transit use will likely necessitate increased spending on maintaining and improving public transit systems, the costs of which may be high.                                                                                               |                                                                                                                                                             | Federal Highway Administration. 2017a. National Household Travel Survey–2017 Table Designer.Travel Day PMT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration. 2017b. National Household Travel Survey – 2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Lund, H., R. Cervero, and R. Wilson. 2004. Travel Characteristics of Transit-Oriented Development in California. January. Available: https://community-wealth.org/sites/clone.community-wealth.org/files/downloads/report-lund-cerv-wil.pdf. Accessed: January 2021. |

| Method                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                               | GHG Handbook Calculation<br>Notes                                                                                                                                                                                                                                                                               | Literature or Evidence Cited                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implement<br>Commute Trip<br>Reduction<br>Marketing | This measure will implement a marketing strategy to promote the project site employer's CTR program. Information sharing and marketing promote and educate employees about their travel choices to the employment location beyond driving such as carpooling, taking transit, walking, and biking, thereby reducing VMT and GHG emissions.                                                                                                                                                                                                       | Yes                             | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | Т-7                                                        | Up to 4.0%<br>(GHG<br>Handbook)        | Employer costs include labor and materials for development and distribution of survey and marketing materials to promote the program and educate potential participants.                                                                                                                                                                                                                                          | Quantification applies at citywide scale and must be adjusted to reflect project-specific reductions. VMT mitigation potential is based on analyzing docked (i.e., station-based) programs.  Note that percentage VMT reductions from Project-Level and Community-Level measures must be calculated separately. | Transportation Research Board (TRB). 2010. Traveler Response to Transportation System Changes Handbook, Third Edition: Chapter 19, Employer and Institutional TDM Strategies. June. Available: http://www.trb.org/Publications/Blurbs/163781.aspx. Accessed: January 2021.         |
| Provide<br>Ridesharing<br>Program                   | This measure will implement a ridesharing program and establish a permanent transportation management association with funding requirements for employers. Ridesharing encourages carpooled vehicle trips in place of single-occupied vehicle trips, thereby reducing the number of trips, VMT, and GHG emissions.  This strategy focuses on encouraging carpooling by project site/building tenants. Existing ride-share companies could also be leveraged by providing subsidies for shared ride purchases (e.g., Waze Carpool or equivalent). | Yes                             | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-8                                                        | Up to 8%<br>(GHG<br>Handbook)          | Costs of developing, implementing, and maintaining a rideshare program in a way that encourages participation are generally borne by municipalities or employers. The beneficiaries include the program participants saving on commuting costs, the employer reducing onsite parking expenses, and the municipality reducing cars on the road, which leads to lower infrastructure and roadway maintenance costs. | Project should be within 1 mile of high-quality transit service (rail or bus with headways less than 15 minutes), 0.5 mile of local or less frequent transit service, or along a designated shuttle route providing last-mile connections to rail service.                                                      | San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool–Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021. |

| Method                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GHG Handbook Calculation<br>Notes                                                                                                                                                  | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implement<br>Subsidized or<br>Discount Transit<br>Program | This measure will provide subsidized or discounted, or free transit passes for employees and/or residents. Reducing the out-of-pocket cost for choosing transit improves the competitiveness of transit against driving, increasing the total number of transit trips and decreasing vehicle trips. This decrease in vehicle trips results in reduced VMT and thus a reduction in GHG emissions.  Example applications include subsidized, discounted, or free out-of-pocket costs for daily or monthly public transit passes.                                | Yes                             | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | Т-9                                                        | Up to 5.5%<br>(GHG<br>Handbook)        | The employer cost is the recurring, direct cost for transit subsidies.  The subsidies will lower the per capita income of the transit service, decreasing the revenue of the local transit agency. This cost may be offset by increased revenue from increased ridership. The beneficiaries include the program participants saving on commuting cost, the employer reducing onsite parking expenses, and the municipality reducing cars on the road, which leads to lower infrastructure and roadway maintenance costs. | Measure can be paired with other commute trip reduction strategies (Measures T-7 through T-13) for increased reductions. Combined implementation of all measures is capped at 45%. | Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA, Workers by WRKTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Handy, L. and S. Boarnet. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. Available: http://www.arb.ca.gov/cc/sb375/policies/transitservice/transit_brief .pdf. Accessed: January 2021.  Litman, T. 2020. Transit Price Elasticities and Cross-elasticities. Victoria Transport Policy Institute. April. Available: https://www.vtpi.org/tranelas.pdf. Accessed: January 2021.  Taylor, B., D. Miller, H. Iseki, and C. Fink. 2008. Nature and/or Nurture? Analyzing the Determinants of Transit Ridership Across US Urbanized Areas. Transportation Research Part A: Policy and Practice, 43(1), 60-77. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.53 11&rep=rep1&type=pdf. Accessed: January 2021 |
| Provide End-of-<br>Trip Bicycle<br>Facilities             | This measure will install and maintain end-of-trip facilities for employee use. End-of-trip facilities include bike parking, bike lockers, showers, and personal lockers. The provision and maintenance of secure bike parking and related facilities encourages commuting by bicycle, thereby reducing VMT and GHG emissions.  Non-residential projects provide facilities such as showers or secure bike lockers to encourage commuting by bike. This strategy is supportive in nature and can help boost the effectiveness of the other strategies listed. | Yes                             | Retail<br>Office<br>Industrial<br>Mixed-Use                | T-10                                                       | Up to 4.4%<br>(GHG<br>Handbook)        | Employer costs include capital and maintenance costs for construction and maintenance of facilities and potentially labor and materials costs for staff to monitor facilities and provide marketing to encourage use of new facilities. The beneficiaries include the program participants saving on commuting cost, the employer reducing onsite parking expenses, and the municipality reducing cars on the road, which leads to lower infrastructure and roadway maintenance costs.                                   | (Measure T-5 or T-6).<br>Combined implementation of                                                                                                                                | Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Method                                       | Description                                                                                                                                           | Applies at<br>Project<br>Scale? | Applicable<br>Land Use            | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                         | GHG Handbook Calculation<br>Notes                                                               | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provide<br>Employer-<br>Sponsored<br>Vanpool | Program offering employer-purchased or leased vehicles to provides groups of 5 to 15 people a flexible and cost-effective rideshare commuting option. | Yes                             | Office<br>Industrial<br>Mixed-Use | T-11                                                       | Up to 20.4%<br>(GHG<br>Handbook)       | Employer costs primarily include the capital costs of vehicle acquisition and the labor costs of drivers, either through incentives to current employees or the hiring of dedicated drivers. The beneficiaries include the program participants saving on commuting cost, the employer reducing onsite parking expenses, and the municipality reducing cars on the road, which leads to lower infrastructure and roadway maintenance costs. | Measure could be paired with other commute trip reduction measures (Measures T-7 through T-13). | California Air Resources Board (CARB). 2020. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day VT by HH_CBSA by TRPTRANS by TRIPPURP. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. Available: https://www.ipcc.ch/report/ar4/wg1/.Accessed: January 2021.  San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool–Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021. |

| Provide Electric<br>Vehicle Charging<br>Infrastructure | Install onsite electric vehicle chargers in an amount beyond what is required by the 2019 California Green Building Standards (CALGreen) at buildings with designated parking areas (e.g., commercial, educational, retail, multifamily). This will enable drivers of PHEVs to drive a larger share of miles in electric mode (eVMT), as opposed to gasoline-powered mode, thereby displacing GHG emissions from gasoline consumption with a lesser amount of indirect emissions from electricity. Most PHEVs owners charge their vehicles at home overnight. When making trips during the day, the vehicle will switch to gasoline mode if/when it reaches its maximum all-electric range. | Yes | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-14 | Up to 11.9%<br>(GHG<br>Handbook) | The primary costs associated with electric vehicle charging infrastructure include the capital costs of purchasing and installing charging stations, electricity costs from use of stations, and maintenance costs of keeping the charging stations in working order. Costs initially fall to the station owners, either municipalities or private owners, but can be passed along to station users with usage fees. Depending on station placement and charging times required for PHEVs, businesses near charging stations can derive benefits from patronage of station users. | Reduction is calculated for all household trips in the surrounding neighborhood, offsetting VMT impacts arising from the project. VMT reduction is associated with expansion of sidewalk coverage, which includes building of new sidewalks and improving degraded or substandard sidewalk. Sidewalk measurements should be collected on both sides of the street.  A reasonableness check should be performed using an average walk trip length of 0.5 miles to determine how many new walk trips result from this measure. If the VMT reduced divided by 0.5 miles results in a large number of new daily walk trips, the VMT reduction should be adjusted.  Note that percentage VMT reductions from Project-Level and Community-Level measures must be calculated separately. | California Air Resources Board (CARB). 2017. Advanced Clean Cars Mid-Term Report, Appendix G: Plug-in Electric Vehicle In-Use and Charging Data Analysis. Available: https://ww2.arb.ca.gov/resources/documents/2017-midterm-review-report. Accessed: January 2021.  California Air Resources Board (CARB). 2019. Final Sustainable Communities Strategy Program and Evaluation Guidelines Appendices. November. Available: https://ww2.arb.ca.gov/sites/default/files/201911/Final%20SCS%20 Program%20and%20Evaluation%20Guidelines%20Appendices.pdf. Accessed: January 2021.  California Air Resources Board (CARB). 2020a. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.  California Air Resources Board (CARB). 2020b. Unofficial electronic version of the Low Carbon Fuel Standard Regulation. Available: https://ww2.arb.ca.gov/sites/default/files/2020-07/2020_lcfs_fro_oal-approved_unofficial_06302020.pdf  California Air Resources Board (CARB). 2021. OFFROAD2017—ORION. Available: https://arb.ca.gov/emfac/emissions-inventory. Database queried by Ramboll and provided electronically to ICF. March 2021.  California Utilities. 2021. Excel database of GHG emission factors for delivered electricity, provided to the Sacramento Metropolitan Air Quality Management District and ICF. January through March 2021.  California Building Standards Commission (CBSC). 2019. Green Building Standards Code, Title 24, Part 11. Appendix A5 – Nonresidential Voluntary Measures. Table A5.601 Nonresidential Buildings: Green Building Standards Code Proposed Performance Approach. July. Available: https://codes.iccsafe.org/content/CAGBSC2019/appendix-a5-nonresidential-voluntary-measures.  Accessed: May 2021.  Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Mille |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------|------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------|------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Method                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                 | GHG Handbook Calculation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provide<br>Pedestrian<br>Network<br>Improvements | This measure will increase the sidewalk coverage to improve pedestrian access. Providing sidewalks and an enhanced pedestrian network encourages people to walk instead of drive. This mode shift results in a reduction in VMT and GHG emissions.                                                                                                                                                                                                                                                                                                                                                                  | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-18                                                       | Up to 6.4%<br>(GHG<br>Handbook)        | Depending on the improvement, capital and infrastructure costs may be high. However, improvements to the pedestrian network will increase pedestrian activity, which can increase businesses patronage and provide a local economic benefit. The local municipality may achieve cost savings through a reduction of cars on the road leading to lower infrastructure and roadway maintenance costs. | Reduction is calculated for all trips in the surrounding neighborhood, offsetting VMT impacts arising from the project. This measure reduces VMT on the roadway segment parallel to the bicycle facility (i.e., the corridor). An adjustment factor is included in the formula to scale the VMT reduction from the corridor level to the plan/community level.  A reasonableness check should be performed using an average bike trip length of 2 miles to determine how many new bike trips result from this measure. If the VMT reduced divided by 2 miles results in a large number of new daily bike trips, the VMT reduction should be adjusted.  Note that percentage VMT reductions from Project-Level and Community-Level measures must be calculated separately. | Frank, L., M. Greenwald, S. Kavage, and A. Devlin. 2011. An Assessment of Urban Form and Pedestrian and Transit Improvements as an Integrated GHG Reduction Strategy. WSDOT Research Report WA-RD 765.1, Washington State Department of Transportation. April. Available: www.wsdot.wa.gov/research/reports/fullreports/765.1.pdf. Accessed: January 2021.  Handy, S., S. Glan-Claudia, and M. Boarnet. 2014. Impacts of Pedestrian Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions: Policy Brief. September. Available: https://ww2.arb.ca.gov/sites/default/files/2020-06/Impacts_of_Pedestrian_Strategies_on_Passenger_Vehicle_Use_a nd_Greenhouse_Gas_Emissions_Policy_Brief.pdf. Accessed: January 2021. |
| Construct or<br>Improve Bike<br>Facility         | This measure will construct or improve a single bicycle lane facility (only Class I, II, or IV) that connects to a larger existing bikeway network. Providing bicycle infrastructure helps to improve biking conditions within an area. This encourages a mode shift on the roadway parallel to the bicycle facility from vehicles to bicycles, displacing VMT and thus reducing GHG emissions. When constructing or improving a bicycle facility, a best practice is to consider local or state bike lane width standards. A variation of this measure is provided as T-19-B, Construct or Improve Bike Boulevard. | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-19-A                                                     | Up to 0.8%<br>(GHG<br>Handbook)        | Capital and infrastructure costs for new bike facilities may be high. The local municipality may achieve cost savings through a reduction of cars on the road leading to lower infrastructure and roadway maintenance costs.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Buehler, R. 2012. Determinants of bicycle commuting in the Washington, DC region: The role bicycle parking, cyclist showers, and free car parking at work. Transportation Research Part D, 17, 525–531.  Available: http://www.pedbikeinfo.org/cms/downloads/DeterminantsofBicycleCommuting.pdf.  Accessed: January 2021.  Federal Highway Administration (FHWA). 2017a. National Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017b. National Household Travel Survey–2017 Table Designer. Workers by WRKTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021 |

| Method                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                            | GHG Handbook Calculation<br>Notes | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construct or<br>Improve Bike<br>Boulevard        | Construct or improve a single bicycle boulevard that connects to a larger existing bikeway network. Bicycle boulevards are a designation within Class III Bikeway that create safe, low-stress connections for people biking and walking on streets. This encourages a mode shift from vehicles to bicycles, displacing VMT and thus reducing GHG emissions. A variation of this measure is provided as T-19-A, Construct or Improve Bike Facility, which is for Class I, II, or IV bicycle infrastructure. | Might apply                     | Retail<br>Office<br>Industrial<br>Mixed-Use                | T-19-B                                                     | Up to 0.2%<br>(GHG<br>Handbook)        | Capital and infrastructure costs for new bike boulevards may be high, though lower than implementing the same length of protected bicycle lanes (Class IV). After the bike boulevard is complete, the local municipality may achieve cost savings from reduced infrastructure and roadway maintenance costs.                                   |                                   | California Air Resources Board (CARB), California Department of Public Health (CDPH), and Nicholas Linesch Legacy Fund. 2020. Integrated Transport and Health Impact Model. Available: https://skylab.cdph.ca.gov/HealthyMobilityOptionTool-ITHIM/#Home. Accessed: September 17, 2021.  Federal Highway Administration (FHWA). 2017a. National Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017b. National Household Travel Survey–2017 Table Designer. Workers by WRKTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Schwartz, S. 2021. Planning for Stress Free Connections: Estimating VMT Reductions. February. |
| Implement<br>Conventional<br>Carshare<br>Program | This measure will increase carshare access in the user's community by deploying conventional carshare vehicles. Carsharing offers people convenient access to a vehicle for personal or commuting purposes. This helps encourage transportation alternatives and reduces vehicle ownership, thereby avoiding VMT and associated GHG emissions.                                                                                                                                                              | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-21-A                                                     | Up to 0.15%<br>(GHG<br>Handbook)       | The costs incurred by the carshare program service manager (typically a municipality or carshare company) may include the capital costs of purchasing vehicles; costs of storing, maintaining, and replacing the fleet; and costs for marketing and administration. Some of these costs may be offset by income generated through program use. |                                   | Martin, E. and S. Shaheen. 2016. The Impacts of Car2go on Vehicle Ownership, Modal Shift, Vehicle Miles Traveled, and Greenhouse Gas Emissions: An Analysis of Five North American Cities. July. Available: https://tsrc.berkeley.edu/publications/impacts-car2go-vehicle-ownership-modal-shift-vehicle-miles-traveled-and-greenhouse-gas. Accessed: March 2021.  San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool – Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021.                                                                                                                                      |

| Method                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                    | GHG Handbook Calculation<br>Notes | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implement<br>Electric Carshare<br>Program | This measure will increase carshare access in the user's community by deploying electric carshare vehicles. Carsharing offers people convenient access to a vehicle for personal or commuting purposes. This helps encourage transportation alternatives and reduces vehicle ownership, thereby avoiding VMT and associated GHG emissions. This also encourages a mode shift from internal combustion engine vehicles to electric vehicles, displacing the emissions-intensive fossil fuel energy with less emissions-intensive electricity. Electric carshare vehicles require more staffing support compared to conventional carshare programs for shuttling electric vehicles to and from charging points. | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-21-B                                                     | Up to 0.18%<br>(GHG<br>Handbook)       | Costs incurred by the service manager (e.g., municipality, carshare company) may include the capital costs of purchasing vehicles; costs of storing, maintaining, and replacing the fleet; and costs for marketing and administration. Some of these costs may be offset by income generated through program use. Participants' recurring costs of renting a carshare vehicle may be offset by the cost savings from access to cheaper transportation. |                                   | California Air Resources Board (CARB). 2020a. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.  California Air Resources Board (CARB). 2020b. Unofficial electronic version of the Low Carbon FuelStproved_unofficial_06302020.pdf  California Utilities. 2021. Excel database of GHG emission factors for delivered electricity, provided to the Sacramento Metropolitan Air Quality Management District and ICF. January through March 2021.  Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. Available: https://www.ipcc.ch/report/ar4/wg1/. Accessed: January 2021.  Martin, E. and Shaheen, S. 2016. The Impacts of Car2go on Vehicle Ownership, Modal Shift, Vehicle Miles Traveled, and Greenhouse Gas Emissions: An Analysis of Five North American Cities. July. Available: https://tsrc.berkeley.edu/publications/impacts-car2govehicle-ownership-modal-shift-vehicle-miles-traveled-and-greenhouse-gas. Accessed: March 2021.  San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool — Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021.  U.S. Department of Energy (U.S. DOE). 2021. Download Fuel Economy Data. January. Available: https://www.fueleconomy.gov/feg/download.shtml. Accessed: January 2021. |

| Method                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GHG Handbook Calculation<br>Notes                                                                                                                                                                         | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implement Pedal<br>(Non-Electric)<br>Bikeshare<br>Program | This measure will establish a bikeshare program. Bikeshare programs provide users with on-demand access to bikes for short-term rentals. This encourages a mode shift from vehicles to bicycles, displacing VMT and thus reducing GHG emissions. Variations of this measure are described in Measure T-22-B, Implement Electric Bikeshare Program, and Measure T-22-C, Implement Scootershare Program.  Note that this measure is most applicable to the denser suburban areas and will be most effective when complemented by enhanced bike facilities. | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-22-A                                                     | Up to 0.02%<br>(GHG<br>Handbook)    | and administration. Some of<br>these costs may be offset by<br>income generated through<br>program use. Program<br>participants will benefit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VMT mitigation potential is based on analyzing docked (i.e., station-based) programs.  Note that percentage VMT reductions from Project-Level and Community-Level measures must be calculated separately. | Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2018. Summary of Travel Trends 2017–National Household Travel Survey. July. Available: https://www.fhwa.dot.gov/policyinformation/documents/2017_nht s_summary_travel_trends.pdf. Accessed: January 2021.  Lazarus, J., J. Pourquier, F. Feng, H. Hammel, and S. Shaheen. 2019. Bikesharing Evolution and Expansion: Understanding How Docked and Dockless Models Complement and Compete – A Case Study of San Francisco. Paper No. 19-02761. Annual Meeting of the Transportation Research Board: Washington, D.C. Available: https://trid.trb.org/view/1572878. Accessed: January 2021.  McQueen, M., G. Abou-Zeid, J. MacArthur, and K. Clifton. 2020. Transportation Transformation: Is Micromobility Making a Macro Impact on Sustainability? Journal of Planning Literature. November. Available: https://doi.org/10.1177/0885412220972696. Accessed: March 2021.  Metropolitan Transportation Commission (MTC). 2017. Plan Bay Area 2040 Final Supplemental Report—Travel Modeling Report. July. Available: http://2040.planbayarea.org/files/2020-02/Travel_Modeling_PBA2040_Supplemental%20Report_7-2017.pdf. Accessed: January 2021. |
| Implement<br>Electric<br>Bikeshare<br>Program             | This measure will establish an electric bikeshare program. Electric bikeshare programs provide users with on-demand access to electric pedal assist bikes for short-term rentals. This encourages a mode shift from vehicles to electric bicycles, displacing VMT and reducing GHG emissions. Variations of this measure are described in Measure T-22-A, Implement Pedal (Non-Electric) Bikeshare Program, and Measure T-22-C, Implement Scootershare Program.                                                                                          | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-22-B                                                     | Up to 0.06%<br>(GHG<br>Handbook)    | The costs incurred by the service manager (e.g., municipality or bikeshare company) may include the capital costs for purchasing a bicycle fleet; installing accessible and secure charging stations; storing, maintaining, and replacing the fleet; and marketing and administration. Some of these costs may be offset by income generated through program use. Program participants will benefit from the cost savings from access to cheaper transportation alternatives (compared to private vehicles, private bicycles, or use of ride-hailing services). The local municipality may achieve cost savings through a reduction of cars on the road leading to lower infrastructure and roadway maintenance costs. | VMT mitigation potential is based on analyzing docked (i.e., station-based) programs.  Note that percentage VMT reductions from Project-Level and Community-Level measures must be calculated separately. | Federal Highway Administration (FHWA). 2017. National Household Travel Survey—2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2018. Summary of Travel Trends 2017—National Household Travel Survey. July. Available: https://www.fhwa.dot.gov/policyinformation/documents/2017_nht s_summary_travel_trends.pdf. Accessed: January 2021.  Fitch, D., H. Mohiuddin, and S. Handy. 2021. Examining the Effects of the Sacramento Dockless E-Bike Share on Bicycling and Driving. MDPI: Sustainability. January. Available: https://www.mdpi.com/2071-1050/13/1/368. Accessed: March 2021.  Metropolitan Transportation Commission (MTC). 2017. Plan Bay Area 2040 Final Supplemental Report—Travel Modeling Report. July. Available: http://2040.planbayarea.org/files/202002/Travel_Modeling_PBA20 40_Supplemental%20Report_7-2017.pdf. Accessed: January 2021.                                                                                                                                                                                                                                                                                                                                                                                                                |

| Method                               | Description                                                                                                                                                                                                                                                        | Applies at<br>Project<br>Scale? | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GHG Handbook Calculation<br>Notes | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implement<br>Scootershare<br>Program | This measure will establish a scootershare program. Scootershare programs provide users with on-demand access to electric scooters for short-term rentals. This encourages a mode shift from vehicles to scooters, displacing VMT and thus reducing GHG emissions. | Might apply                     | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-22-C                                                     | Up to 0.07%<br>(GHG<br>Handbook)       | The costs incurred by the service manager (e.g., municipality or scootershare company) may include the capital costs for purchasing a scooter fleet; installing accessible and secure docking stations; storing, maintaining, and replacing the fleet; and marketing and administration. Some of these costs may be offset by income generated through program use. Program participants will benefit from cost savings from access to cheaper transportation alternatives (compared to private vehicles, private scooters, or use of ride-hailing services). The local municipality may achieve cost savings through a reduction of cars on the road leading to lower infrastructure and roadway maintenance costs. |                                   | Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2018. Summary of Travel Trends 2017–National Household Travel Survey. July. Available: https://www.fhwa.dot.gov/policyinformation/documents/2017_nht s_summary_travel_trends.pdf. Accessed: January 2021.  Metropolitan Transportation Commission (MTC). 2017. Plan Bay Area 2040 Final Supplemental Report—Travel Modeling Report. July. Available: http://2040.planbayarea.org/files/202002/Travel_Modeling_PBA20 40_Supplemental%20Report_7-2017.pdf. Accessed: January 2021.  McQueen, M., G. Abou-Zeid, J. MacArthur, and K. Clifton. 2020. Transportation Transformation: Is Micromobility Making a Macro Impact on Sustainability? Journal of Planning Literature. November.  Available: https://doi.org/10.1177/0885412220972696. Accessed: March 2021.  Portland Bureau of Transportation (PBOT). 2021. Portland Bureau of Transportation E-Scooter Dashboard. Available: https://public.tableau.com/profile/portland.bureau.of.transportation n#!/vizhome/PBOTE ScooterTripsDashboard/ScooterDashboard. Accessed: March 2021. |

| Method                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     | Applies at<br>Project<br>Scale?                                     | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GHG Handbook Calculation<br>Notes | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extend Transit<br>Network<br>Coverage or<br>Hours | This measure will expand the local transit network by either adding or modifying existing transit service or extending the operation hours to enhance the service near the project site. Starting services earlier in the morning and/or extending services to late-night hours can accommodate the commuting times of alternative-shift workers. This will encourage the use of transit and therefore reduce VMT and associated GHG emissions. | Might apply<br>(coordination<br>with transit<br>agency<br>required) | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-25                                                       | 4.6% (GHG<br>Handbook)              | Infrastructure costs for extending the physical network coverage of a transit system can be significant. Costs to expand track-dependent transit, such as light rail and passenger rail, are high and can require resource- and time-intensive advanced planning. Costs to expand vehicle-dependent transit, such as busses, are likewise high but may be limited to procurement of additional vehicles. Any expansion of transit, including just service hours, would increase staffing and potentially maintenance costs. A portion of these costs may be offset by increased transit usage and associated income. Commuters who may more easily be able to travel without a car may also observe cost savings from reduce vehicle usage or ownership. | with Measure 26.                  | Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Handy, S., K. Lovejoy, M. Boarnet, and S. Spears. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. October. Available: https://ww2.arb.ca.gov/sites/default/files/2020-06/Impacts_of_Transit_Service_Strategies_on_Passenger_Vehicle_Us e_and_Greenhouse_Gas_Emissions_Policy_Brief.pdf. Accessed: January 2021. |

| Method                                   | Description                                                                                                                                                                                                                                       | Applies at<br>Project<br>Scale?                                     | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                                              | GHG Handbook Calculation<br>Notes             | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Increase Transit<br>Service<br>Frequency | Increase transit frequency on one or more transit lines serving the plan/community. Increased transit frequency reduces waiting and overall travel times, which improves the user experience and increases the attractiveness of transit service. | Might apply<br>(coordination<br>with transit<br>agency<br>required) | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-26                                                       |                                        | Increasing transit service frequency may require capital investment to purchase additional vehicles. Staff and maintenance costs may also increase. A portion of these costs may be offset by increased transit usage and associated income. Commuters who may more easily be able to travel without a car may also observe cost savings from reduce vehicle usage or ownership. | This measure could be paired with Measure 25. | California Air Resources Board (CARB). 2020. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017a. National Household Travel Survey—2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017b. National Household Travel Survey—2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Handy, S., K. Lovejoy, M. Boarnet, S. Spears. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. October. Available: https://ww2.arb.ca.gov/sites/default/files/202006/Impacts_of_Transit_Service_Strategies_on_Passenger_Vehicle_Use_and_Greenhouse_Gas_Emissions_Policy_Brief.pdf. Accessed: January 2021.  San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool—Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021.  U.S. Department of Energy (U.S. DOE). 2021. Fuel Economy Datasets for All Model Years (1984-2021). January. Available: https://www.fueleconomy.gov. Accessed: January 2021. |

| Method                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                         | Applies at<br>Project<br>Scale?                                     | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> |                        | Cost Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GHG Handbook Calculation<br>Notes                                                                     | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implement<br>Transit-<br>Supportive<br>Roadway<br>Treatments | This measure will implement transit-supportive treatments on the transit routes serving the plan/community. Transit-supportive treatments incorporate a mix of roadway infrastructure improvements and/or traffic signal modifications to improve transit travel times and reliability. This results in a mode shift from single occupancy vehicles to transit, which reduces VMT and the associated GHG emissions. | Might apply<br>(coordination<br>with transit<br>agency<br>required) | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-27                                                       | 0.6% (GHG<br>Handbook) | Costs and savings of transit-supportive roadway treatments vary depending on the strategy pursued, ranging from low-cost route optimization changes to high-cost infrastructure projects (e.g., bus-only lanes). Reducing route cycle time without significantly increasing the number of transit vehicles can result in net cost savings for the transit system. Dedicated transit infrastructure will improve transit reliability and increase ridership. This supplements existing transit income streams for municipalities. Increased ridership similarly reduces vehicle use, which has cost benefits for both commuters and municipalities. | This measure could be paired with other Transit subsector strategies (Measure T-25 and Measure T-29). | Federal Highway Administration (FHWA). 2017a. National Household Travel Survey–2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017b. National Household Travel Survey–2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Transportation Research Board (TRB). 2007. Transit Cooperative Research Program Report 118: Bus Rapid Transit Practitioner's Guide. Available: https://nacto.org/docs/usdg/tcrp118brt_practitioners_kittleson.pdf. Accessed: January 2021. |

| Method                       | Description                                                                                                                                                                 | Applies at<br>Project<br>Scale?                                     | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of<br>Effectiveness <sup>3</sup> | Cost Considerations                | GHG Handbook Calculation<br>Notes                                | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                             |                                                                     |                                                            |                                                            |                                        | Providing BRT will require capital |                                                                  | California Air Resources Board (CARB). 2020. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017a. National Household Travel Survey–2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Provide Bus<br>Rapid Transit | Converting existing bus routes to a bus rapid transit (BRT) system. Improvements include:  • Exclusive right-of-way  • Enhanced station design  • Advanced technology buses | Might apply<br>(coordination<br>with transit<br>agency<br>required) | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-28                                                       | 13.8% (GHG<br>Handbook)                | separated busways are more         | This measure could be paired with Measure T-25 and Measure T-29. | Federal Highway Administration (FHWA). 2017b. National Household Travel Survey–2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Handy, S., K. Lovejoy, M. Boarnet, and S. Spears. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. October. Available: https://ww2.arb.ca.gov/sites/default/files/202006/Impacts_of_Transit_Service_Strategies_on_Passenger_Vehicle_Use_and_Greenhouse_Gas_Emissions_Policy_Brief.pdf. Accessed: January 2021.  San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction CalculatorTool—Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021.  Transportation Research Board (TRB). 2007. Transit Cooperative Research Program Report 118: Bus Rapid Transit Practitioner's Guide. Available: https://nacto.org/docs/usdg/tcrp118brt_practitioners_kittleson.pdf. Accessed: January 2021.  U.S. Department of Energy (U.S. DOE). 2021. Fuel Economy Datasets for All Model Years (1984-2021). January. Available: https://www.fueleconomy.gov. Accessed: January 2021 |

| Method                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Applies at<br>Project<br>Scale?                                     | Applicable<br>Land Use                                     | GHG<br>Handbook<br>Measure (if<br>applicable) <sup>1</sup> | Range of Effectiveness <sup>3</sup> | Cost Considerations                                                                                                                                                                                                                                                                                                                                 | GHG Handbook Calculation<br>Notes | Literature or Evidence Cited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduce Transit<br>Fares | This measure will reduce transit fares on the transit lines serving the plan/community. A reduction in transit fares creates incentives to shift travel to transit from single-occupancy vehicles and other traveling modes, which reduces VMT and associated GHG emissions.  This measure differs from Measure T-8, Implement Subsidized or Discounted Transit Program, which can be offered through employer-based benefits programs in which the employer fully or partially pays the employee's cost of transit. | Might apply<br>(coordination<br>with transit<br>agency<br>required) | Residential<br>Retail<br>Office<br>Industrial<br>Mixed-Use | T-29                                                       | 1.2% (GHG<br>Handbook)              | Reducing transit fares will lower the per capita income of the transit service. This may be outweighed by increased ridership, and savings on infrastructure costs due to reduced car usage. Reduced fares can be targeted to specific populations or groups, depending on need. Individuals receiving the reduced fare will obtain a cost savings. |                                   | Federal Highway Administration (FHWA). 2017a. National Household Travel Survey–2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Federal Highway Administration (FHWA). 2017b. National Household Travel Survey–2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.  Handy, S., K. Lovejoy, M. Boarnet, and S. Spears. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. October. Available: https://ww2.arb.ca.gov/sites/default/files/2020-06/Impacts_of_Transit_Service_Strategies_on_Passenger_Vehicle_Us e_and_Greenhouse_Gas_Emissions_Policy_Brief.pdf. Accessed: January 2021.  San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool–Design Document. June. Available: https://www.icommutesd.com/docs/default-source/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021. |

Source: Fehr & Peers, 2022.

<sup>1</sup> Refer to updated information contained in the 2021 GHG Handbook. CAPCOA (2021) Each measure is numbered alphanumerically with the first letter of the emissions sector serving as the letter code (e.g., T=Transportation).

<sup>2</sup> Reflects types of trips affected (GHG Handbook) and/or scale of application.

<sup>3</sup> Range of effectiveness is based on the 2021 GHG Handbook unless otherwise specified. Measures that are "not quantified, grouped, and/or supporting" measures without a range provided are those that have not been researched in order to determine their individual effectiveness. Measures that are not quantified are not included in the table.

## City of Santa Fe Springs



April 10, 2023

#### **CONSENT ITEM**

Conditional Use Permit Case No. 777-3

A request for a time extension of Conditional Use Permit (CUP) Case No. 777 which allowed the establishment, operation, and maintenance of a convenience store at 13417 Rosecrans Avenue (APN: 8059-003-035), within the M-1, Light Manufacturing, Zone. (Muhamet Cifligu)

#### RECOMMENDATIONS

- Find and determine that granting a one (1) year time extension of Conditional Use Permit Case No. 777, will not be detrimental to persons or properties in the surrounding area or to the City in general, and will be in conformance with the overall purpose and objective of the Zoning Ordinance and consistent with the goals, policies and program of the City's General Plan; and
- Approve a one (1) year time extension of Conditional Use Permit Case No. 777 (until April 10, 2024), subject to the original conditions of approval for Conditional Use Permit Case No. 777 as contained within this staff report.

#### **LOCATION / BACKGROUND**

The subject property, is located at 13417 Rosecrans Avenue (APN: 8059-003-035), at the northeast corner of Carmenita Road and Rosecrans Avenue, and is zoned M-1 (Light Manufacturing). The subject property was previously occupied by an equipment rental company but remains vacant today. All structures that had previously existed on the site have been demolished. Industrial uses are located to the north, east, and west of the property. The property to the south is within the City of Norwalk's boundary and is currently occupied by two drive-thru restaurant uses (Taco Bell and Burger King).

The applicant, Muhamet Cifligu, received approval for the subject Conditional Use Permit (CUP Case No. 777) to allow the operation and maintenance of a convenience store within the M-1 Zone, since a convenience grocery market is considered a conditional use activity within the M-1 Zone. The applicant's proposal was to construct a new 2,998 sq. ft. convenience store along with a 2,638 sq. ft. carwash and a gas station on the subject property. Therefore, concurrently with the original approval of CUP Case No. 777, the Planning Commission approved a Development Plan Approval (DPA Case No. 916) to allow the design and construction of the convenience store, car wash, and gas station. At the same meeting, the Planning Commission also took action to approve Modification Permit Case No. 1269 to allow for the reduction in the overall required landscape area and the width of the required landscaping strip along street front.

The subject Conditional Use Permit (CUP) was originally approved on January 9, 2017. It should be noted that the CUP has been provided a total of three, one (1) year time

Report Submitted By: Jimmy Wong

Date of Report: April 5, 2023

Planning and Development Department

ITEM NO. 9A

CUP Case No. 777-3 Page 2 of 6

extensions, on July 9, 2018, August 12, 2019, and October 12, 2020. The last time extension expired on October 12, 2021. While the applicant has continued to make progress with the necessary site preparation, demolishing all structures on-site, and continue to move forward with plan check, the convenience market has yet to be constructed. As a result, the CUP for the convenience store technically has not been utilized. It should be noted, however, that the City has issued a grading permit to the applicant and precise grading is anticipated to be finished by July 2023.

In accordance with Section 155.721 of the City's Zoning Ordinance (see Code Section below), a conditional use permit, which has not been utilized within 12 months, shall become null and void. The Code, however, provides that an extension of time may be granted by Commission or Council action.

### City of Santa Fe Springs – Zoning Regulations

Section 155.721 – Expiration

Unless otherwise specified in the action granting a conditional use permit, said conditional use permit which has not been utilized within 12 months from the effective date shall become null and void. Also, the abandonment or nonuse of a conditional use permit for a period of 12 consecutive months shall terminate said conditional use permit and any privileges granted thereunder shall become null and void. However, an extension of time may be granted by Commission or Council action.

#### STAFF CONSIDERATIONS

Although the proposed project has not yet begin construction, the applicant has continued their efforts to keep the project moving forward. As mentioned previously, precise grading is expected to be completed by this July and construction activities should commence immediately afterwards. Providing the applicant with an extension to his Conditional Use Permit will keep it valid and allow him to continue the development process and eventually construct the project. Once constructed, the CUP for the convenience store can then be utilized. Staff, therefore, is recommending that the Planning Commission grant the applicant a final, one (1) year time extension, subject to the conditions of approval as provided herein.

#### **CONDITIONS OF APPROVAL**

- 1. That the approval of Conditional Use Permit No. 777 shall allow for the establishment, operation, and maintenance of a convenience store within a 2,999 square feet unit located at 13417 Rosecrans Avenue.
- 2. That there shall be no on-site kitchen facilities or preparation of food or drinks without prior approval from the Director of Planning or his/her designee.

Report Submitted By: Jimmy Wong Date of Report: April 5, 2023

CUP Case No. 777-3 Page 3 of 6

3. That all vehicles associated with the subject convenience store shall be parked on the subject site at all times. Off-site parking is not permitted and would result in the restriction or revocation of privileges granted under this permit. In addition, any vehicle associated with the subject convenience store shall not obstruct or impede any on-site or off-site traffic.

- 4. That the proposed convenience store, including any lighting, fences, walls, cabinets, and poles shall be maintain in good repair, free from trash, debris, litter, graffiti and other forms of vandalism. Any litter, graffiti, and/or damage caused from other forms of vandalism shall be repaired within 72 hours of occurrence, weather permitting, to minimize occurrences of dangerous conditions or visual blight. Paint utilized in covering graffiti shall be a color that matches, as closely possible, the color of the adjacent surfaces.
- 5. That the applicant shall comply with the City's "Heritage Artwork in Public Places Program" in conformance with City Ordinance No. 1054
- 6. That the applicant shall not allow commercial vehicles, trucks and/or truck tractor to queue on Carmenita Road or Rosecrans Avenue, use streets as a staging, or to back up onto the street from subject property.
- 7. That the proposed building shall be constructed of quality material and any material shall be replaced when and if the material becomes deteriorated, warped, discolored, or rusted. That prior to occupancy of the property/building, the applicant, and/or his tenant(s), shall obtain a valid business license (AKA Business Operation Tax Certification), and submit a Statement of Intended Use. Both forms, and other required accompanying forms, may be obtained at City Hall by contacting Cecilia Martinez at (562) 868-0511, extension 7527, or through the City's web site (www.santafesprings.org).
- 8. That the applicant shall not sublet, lease, or rent the proposed convenience store without prior approval from the Director of Planning.
- 9. That all other requirements of the City's Zoning Ordinance, Building Code, Property Maintenance Ordinance, State and City Fire Code and all other applicable County, State and Federal regulations and codes shall be complied with.
- 10. That Conditional Use Permit Case No. 777 shall be subject to a compliance review in one (1) year, no later than **April 10, 2024**, to ensure the subject convenience store is still operating in strict compliance with the conditions of approval as stated in this staff report.

Report Submitted By: Jimmy Wong Date of Report: April 5, 2023

CUP Case No. 777-3 Page 4 of 6

11. That if there is evidence that conditions of approval have not been fulfilled or the use has or have resulted in a substantial adverse effect on the health, and/or general welfare of users of adjacent or proximate property, or have a substantial adverse impact on public facilities or services, the Director of Planning may refer the use permit to the Planning Commission for review. If upon such review, the Commission finds that any of the results above have occurred, the Commission may modify or revoke the use permit.

Wayne M. Morrell Director of Planning

Wayne M. Morrell

#### Attachment(s)

- 1. Aerial Photograph
- 2. Time Extension Request Letter

CUP Case No. 777-3 Page 5 of 6

**Attachment 1: Aerial Photograph** 



# **CITY OF SANTA FE SPRINGS**



**Conditional Use Permit 777-3** 

13417 Rosecrans Avenue (APN: 8059-003-025, 023, and 026)

CUP Case No. 777-3 Page 6 of 6

#### **Attachment 2: Time Extension Request Letter**

Architecture Planning Design

October 11, 2021

Ms. Claudia L. Jimenez
Assistant Planner
Department of Planning and Development
City of Santa Fe Springs
11710 Telegraph Road
Santa Fe Springs, California 90670

Subject: Conditional Use Permit (CUP) Case No. 777, 13417 Rosecrans Avenue, Santa Fe Springs, California 90670 request of review of compliance

Dear Ms. Jimenez,

As requested per your letter dated October 7, 2021, we are presently in obtaining building permits and other approval agencies for the project per the Condition of Approval per Conditional Permit Case No. 777. Also, we have completed demolition of the site and existing buildings plus the Owner is still in negotiation with 7-11 of possibility of having them as the convenience store vendor. Therefore, we are requesting an extension to the Conditional Use Permit (CIP) Case No. 777.

If there are any questions, please feel free to call me if you have any questions.

Sincerely,

Furuto Rubio & Associates, Inc.

Roy Furuto A.I.A. President

Cc; File Attachments Matt Cifligu, Owner

